Effect of Fiber Geometry on Pulsatile Pumping and Energy Expenditure

  • Anna Grosberg
  • Morteza Gharib
  • Arash Kheradvar
Original Article


Myocardial fiber orientation is a topic that has recently received much attention in connection with cardiac pumping function. The twisting motion of the cardiac base to apex can be a direct result of this geometric orientation of these fibers. One important question that has not been addressed yet is whether there is any relationship between the contractile energy expenditure and the geometric orientation of myocardial fibers. In the present work, we study the effect of contractile fiber orientation on pumping function. We particularly compare the effect of fiber geometry on ejection fraction, and on the energy required for contraction in both cylindrical and half-ellipsoid shell models. The analytical models we used signify the importance of twisting motion in minimizing the energy required to generate certain ejection fraction. Indeed, we quantified that if the angle of contractile fibers is appropriate for the shape and the size of the pump, twisting scheme can tremendously reduce the energy requirement for pumping.


Ventricular pumping Analytical model Cardiac twist 


  1. Burkhoff, D., Sagawa, K., 1986. Ventricular efficiency predicted by an analytical model. Am. J. Physiology 250(6), 1021–1027. Google Scholar
  2. Landau, L.D., Lifshitz, E.M., 2002. Theory of Elasticity, 3rd edn. Course of Theoretical Physics, vol. 7. Butterworth and Heeinemann, London. Google Scholar
  3. Moon, M.R., Ingels, N.B., Jr., Daughters, G.T. II, Stinson, E.B., Hanses, D.E., Miller, D.C., 1994. Alterations in left ventricular twist mechanics with inotropic stimulation and volume loading in human subjects. Circulation 89(1), 142–150. Google Scholar
  4. Nevo, E., Lanir, Y., 1989. Structural finite deformation model of the left ventricle during diastole and systole. J. Biomech. Eng. 111, 342–349. CrossRefGoogle Scholar
  5. Ohayon, J., Chadwick, R.S., 1988. Effects of collagen microstructure on the mechanics of the left ventricle. Biophys. J. 54(6), 1077–1088. CrossRefGoogle Scholar
  6. Taber, L.A., Yang, M., Podszus, W.W., 1996. Mechanics of ventricular torsion. J. Biomech. 29(6), 742–752. CrossRefGoogle Scholar
  7. Tibayan, F.A., Lai, D.T.M., Timek, T.A., Dagum, P., Liang, D., Daughters, G.T., Ingels, N.B., Miller, D.C., 2002. Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg. 124(1), 43–49. CrossRefGoogle Scholar
  8. Tibayan, F.A., Rodriguez, F., Langer, F., Zasio, M.K., Bailey, L., Liang, D., Daughters, G.T., Ingels, N.B., Miller, D.C., 2004. Alterations in left ventricular torsion and diastolic recoil after myocardial infarction with and without chronic ischemic mitral regurgitation. Circulation 110(11), II109–II114. Google Scholar
  9. Yun, K.L., Niczyporuk, M.A., Daughters, G.T. II, Ingels, N.B., Jr., Stinson, E.B., Alderman, E.L., Hanses, D.E., Miller, D.C., 1991. Alterations in left ventricular diastolic twist mechanics during acute human cardiac allograft rejection. Circulation 83(3), 962–973. Google Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  • Anna Grosberg
    • 1
  • Morteza Gharib
    • 1
    • 2
  • Arash Kheradvar
    • 3
  1. 1.Option in BioengineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Graduate Aeronautical LaboratoriesCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations