Advertisement

Continuous Models for Cell Migration in Tissues and Applications to Cell Sorting via Differential Chemotaxis

  • Kevin J. PainterEmail author
Original Article

Abstract

Chemotaxis, the guided migration of cells in response to chemical gradients, is vital to a wide variety of biological processes, including patterning of the slime mold Dictyostelium, embryonic morphogenesis, wound healing, and tumor invasion. Continuous models of chemotaxis have been developed to describe many such systems, yet few have considered the movements within a heterogeneous tissue composed of multiple subpopulations. In this paper, a partial differential equation (PDE) model is developed to describe a tissue formed from two distinct chemotactic populations. For a “crowded” (negligible extracellular space) tissue, it is demonstrated that the model reduces to a simpler one-species system while for an “uncrowded” tissue, it captures both movement of the entire tissue (via cells attaching to/migrating within an extracellular substrate) and the within-tissue rearrangements of the separate cellular subpopulations. The model is applied to explore the sorting of a heterogeneous tissue, where it is shown that differential-chemotaxis not only generates classical sorting patterns previously seen via differential-adhesion, but also demonstrates new classes of behavior. These new phenomena include temporal dynamics consisting of a traveling wave composed of spatially sorted subpopulations reminiscent of Dictyostelium slugs.

Keywords

Differential-chemotaxis Cell sorting Continuous model Morphogenesis Dictyostelium 

References

  1. Alt, W., 1980. Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biol. 9, 147–177. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Armstrong, N.J., Painter, K.J., Sherratt, J.A., 2006. A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243, 98–113. CrossRefMathSciNetGoogle Scholar
  3. Byrne, H., Owen, M., 2004. A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49, 604–626. zbMATHCrossRefMathSciNetGoogle Scholar
  4. Charron, F., Tessier-Lavigne, M., 2005. Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132, 2251–2262. CrossRefGoogle Scholar
  5. Condeelis, J., Singer, R., Segall, J., 2005. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695–718. CrossRefGoogle Scholar
  6. Dallon, J., Othmer, H., 2004. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J. Theor. Biol. 231, 203–222. CrossRefMathSciNetGoogle Scholar
  7. Dormann, D., Weijer, C., 2006. Chemotactic cell movement during Dictyostelium development and gastrulation. Curr. Opin. Genet. Dev. 16, 367–373. CrossRefGoogle Scholar
  8. Early, A., Abe, T., Williams, J., 1995. Evidence for positional differentiation of prestalk cells and for a morphogenetic gradient in Dictyostelium. Cell 83, 91–99. CrossRefGoogle Scholar
  9. Feit, I., Pawlikowski, J., Zawilski, C., 2007. A model for cell type localization in the migrating slug of Dictyostelium discoideum based on differential chemotactic sensitivity to cAMP and differential sensitivity to suppression of chemotaxis by ammonia. J. Biosci. 32, 329–338. CrossRefGoogle Scholar
  10. Foty, R.A., Steinberg, M.S., 2004. Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48, 397–409. CrossRefGoogle Scholar
  11. Friedl, P., Brocker, E.B., 2000. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol. Life Sci. 57, 41–64. CrossRefGoogle Scholar
  12. Gatenby, R., Gawlinski, E., 1996. A reaction–diffusion model of cancer invasion. Cancer Res. 56, 5745–5753. Google Scholar
  13. Gerisch, A., Chaplain, M., 2007. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250, 684–704. CrossRefGoogle Scholar
  14. Glazier, J.A., Graner, F., 1993. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128–2154. CrossRefGoogle Scholar
  15. Heldin, C.-H., Westermark., B., 1999. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316. Google Scholar
  16. Hillen, T., 2002. Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12(7), 1007–1034. zbMATHCrossRefMathSciNetGoogle Scholar
  17. Hillen, T., Painter, K., 2001. A parabolic model with bounded chemotaxis—prevention of overcrowding. Adv. Appl. Math. 26, 280–301. zbMATHCrossRefMathSciNetGoogle Scholar
  18. Hillen, T., Painter, K.J., 2009. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217. zbMATHCrossRefMathSciNetGoogle Scholar
  19. Höfer, T., Sherratt, J., Maini, P., 1995. Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B 259, 249–257. CrossRefGoogle Scholar
  20. Keller, E., Segel, L., 1970. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415. CrossRefGoogle Scholar
  21. Keller, E., Segel, L., 1971. Model for chemotaxis. J. Theor. Biol. 30, 225–234. CrossRefGoogle Scholar
  22. Kimmel, A., Firtel, R., 2004. Breaking symmetries: regulation of Dictyostelium development through chemoattractant and morphogen signal-response. Curr. Opin. Genet. Dev. 14, 540–549. CrossRefGoogle Scholar
  23. Larrivee, B., Karsan, A., 2000. Signaling pathways induced by vascular endothelial growth factor (review). Int. J. Mol. Med. 5, 447–456. Google Scholar
  24. Lauffenburger, D., Horwitz, A., 1996. Cell migration: a physically integrated molecular process. Cell 84, 359–369. CrossRefGoogle Scholar
  25. Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A., 2003. Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: is there a connection?. Bull. Math. Biol. 65, 693–730. CrossRefGoogle Scholar
  26. Matsukuma, S., Durston, A., 1979. Chemotactic cell sorting in Dictyostelium discoideum. J. Embryol. Exp. Morphol. 50, 243–251. Google Scholar
  27. Montell, D., 2006. The social lives of migrating cells in Drosophila. Curr. Opin. Genet. Dev. 16, 374–383. CrossRefGoogle Scholar
  28. Murdoch, C., Giannoudis, A., Lewis, C., 2004. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234. CrossRefGoogle Scholar
  29. Murray, J., 2003. On the mechanochemical theory of biological pattern formation with application to vasculogenesis. C.R. Biol. 326, 239–252. CrossRefGoogle Scholar
  30. Nardi, J., 1994. Rearrangement of epithelial cell types in an insect wing monolayer is accompanied by differential expression of a cell surface protein. Dev. Dyn. 199, 315–325. Google Scholar
  31. Odell, G., Bonner, J.T., 1986. How the Dictyostelium discoideum grex crawls. Philos. Trans. R. Soc. Lond. 312, 487–525. CrossRefGoogle Scholar
  32. Othmer, H., Stevens, A., 1997. Aggregation, blowup and collapse: the ABC’s of generalized taxis. SIAM J. Appl. Math. 57, 1044–1081. zbMATHCrossRefMathSciNetGoogle Scholar
  33. Othmer, H., Dunbar, S., Alt, W., 1988. Models of dispersal in biological systems. J. Math. Biol. 26, 263–298. zbMATHCrossRefMathSciNetGoogle Scholar
  34. Painter, K., Sherratt, J.A., 2003. Modelling the movement of interacting cell populations. J. Theor. Biol. 225, 325–337. CrossRefMathSciNetGoogle Scholar
  35. Painter, K., Maini, P., Othmer, H., 2000. Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41, 285–314. zbMATHCrossRefMathSciNetGoogle Scholar
  36. Painter, K.J., Hillen, T., 2002. Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–544. zbMATHMathSciNetGoogle Scholar
  37. Palsson, E., Othmer, H., 2000. A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 97, 10448–10453. CrossRefGoogle Scholar
  38. Pate, E., Othmer, H., 1986. Differentiation, cell sorting and proportion regulation in the slug stage of Dictyostelium discoideum. J. Theor. Biol. 118(3), 301–319. CrossRefMathSciNetGoogle Scholar
  39. Patlak, C., 1953. Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338. CrossRefMathSciNetGoogle Scholar
  40. Sherratt, J.A., 2000. Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. Lond. A 456, 2365–2386. zbMATHCrossRefMathSciNetGoogle Scholar
  41. Sherratt, J.A., Nowak, M.A., 1992. Oncogenes, anti-oncogenes and the immune response to cancer. Proc. R. Soc. Lond. B 248, 261–272. CrossRefGoogle Scholar
  42. Simpson, M.J., Landman, K.A., Hughes, B.D., Newgreen, D., 2006. Looking inside an invasion wave of cells using continuum models: proliferation is the key. J. Theor. Biol. 243, 343–360. CrossRefMathSciNetGoogle Scholar
  43. Steinberg, M.S., 2007. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Gen. Dev. 17, 281–286. CrossRefGoogle Scholar
  44. Townes, P., Holtfreter, J., 1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120. CrossRefGoogle Scholar
  45. Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72. CrossRefGoogle Scholar
  46. Tyson, R., Lubkin, S., Murray, J., 1999. Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38, 359–375. zbMATHCrossRefMathSciNetGoogle Scholar
  47. Umeda, T., 1993. A thermodynamical model of cell distributions in the slug of cellular slime mold. Bull. Math. Biol. 55, 451–464. zbMATHGoogle Scholar
  48. Umeda, T., Inouye, K., 1999. Theoretical model for morphogenesis and cell sorting in Dictyosteilium discoideum. Physica D 126, 189–200. Google Scholar
  49. Umeda, T., Inouye, K., 2004. Cell sorting by differential cell motility: A model for pattern formation in Dictyostelium. J. Theor. Biol. 226, 215–224. CrossRefMathSciNetGoogle Scholar
  50. Vasiev, B., Weijer, C., 1999. Modeling chemotactic cell sorting during Dictyostelium discoideum mound formation. Biophys. J. 76, 595–605. CrossRefGoogle Scholar
  51. Webb, S., Owen, M., Byrne, H., Murdoch, C., Lewis, C., 2007. Macrophage-based anti-cancer therapy: modelling different modes of tumour targeting. Bull. Math. Biol. 69, 1747–1776. zbMATHCrossRefMathSciNetGoogle Scholar
  52. Weiner, R., Schmitt, B., Podhaisky, H., 1997. Rowmap—a row-code with Krylov techniques for large stiff odes. Appl. Numer. Math. 25, 303–319. zbMATHCrossRefMathSciNetGoogle Scholar
  53. Wolpert, L., 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47. CrossRefGoogle Scholar
  54. Woodward, D., Tyson, R., Myerscough, M., Murray, J., Budrene, E., Berg, H., 1995. Spatiotemporal patterns generated by Salmonella-typhimurium. Biophys. J. 68(5), 2181–2189. CrossRefGoogle Scholar
  55. Wu, D., 2005. Signaling mechanisms for regulation of chemotaxis. Cell Res. 15, 52–56. CrossRefGoogle Scholar
  56. Yang, X., Dormann, D., Münsterberg, A., Weijer, C., 2002. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev. Cell 3, 425–437. CrossRefGoogle Scholar
  57. Yue, Q., Wagstaff, L., Yang, X., Weijer, C., Münsterberg, A., 2008. Wnt3a-mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function. Development 135, 1029–1037. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations