Hadamard Phylogenetic Methods and the n-taxon Process

Original Article

Abstract

The Hadamard transform (Hendy and Penny, Syst. Zool. 38(4):297–309, 1989; Hendy, Syst. Zool. 38(4):310–321, 1989) provides a way to work with stochastic models for sequence evolution without having to deal with the complications of tree space and the graphical structure of trees. Here we demonstrate that the transform can be expressed in terms of the familiar P[τ]=eQ[τ] formula for Markov chains. The key idea is to study the evolution of vectors of states, one vector entry for each taxa; we call this the n-taxon process. We derive transition probabilities for the process. Significantly, the findings show that tree-based models are indeed in the family of (multi-variate) exponential distributions.

Keywords

Phylogenetics Stochastic models Hadamard conjugation Spectral decomposition 

References

  1. Bashford, J., Jarvis, P.D., Sumner, J., Steel, M.A., 2004. U(1)×U(1)×U(1) symmetry of the Kimura 3ST model and phylogenetic branching processes. J. Phys. A Math. Gen. 37, 81–89. CrossRefGoogle Scholar
  2. Bryant, D., 2005. Extending tree models to split networks. In: Pachter, L., Sturmfels, B. (Eds.), Algebraic Statistics for Computational Biology, pp. 322–334. Cambridge University Press, Cambridge. Google Scholar
  3. Bryant, D., Galtier, N., Poursat, M.-A., 2005. Likelihood calculations in molecular phylogenetics. In: Gascuel, O. (Ed.), Mathematics of Evolution and Phylogeny, pp. 33–62. Oxford University Press, London. Google Scholar
  4. Bryant, D., Moulton, V., 2004. NeighborNet: An agglomerative algorithm for the construction of planar phylogenetic networks. Mol. Biol. Evol. 21, 255–265. CrossRefGoogle Scholar
  5. Evans, S.N., Speed, T.P., 1993. Invariants of some probability models used in phylogenetic inference. Ann. Stat. 21(1), 355–377. MATHCrossRefMathSciNetGoogle Scholar
  6. Felsenstein, J., 2004. Inferring Phylogenies. Sinauer, Sunderland. Google Scholar
  7. Hendy, M., Penny, D., 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38(4), 297–309. CrossRefGoogle Scholar
  8. Hendy, M.D., 1989. The relationship between simple evolutionary tree models and observable sequence data. Syst. Zool. 38(4), 310–321. CrossRefGoogle Scholar
  9. Hendy, M.D., Snir, S., 2008. Hadamard conjugation for the Kimura 3st model: Combinatorial proof using path sets. Trans. Comput. Biol. Bioinform. 5(3), 461–471. CrossRefGoogle Scholar
  10. Horn, R.A., Johnson, C.R., 1994. Topics in Matrix Analysis. Cambridge University Press, Cambridge. Corrected reprint of the 1991 original. MATHGoogle Scholar
  11. Huber, K.T., Langton, M., Penny, V., Moulton, D., Hendy, M., 2002. Spectronet: A package for computing spectra and median networks. Appl. Bioinform. 1(3), 2041–2059. Google Scholar
  12. Huson, D., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. CrossRefGoogle Scholar
  13. Jarvis, P.D., Bashford, J., 2001. Quantum field theory and phylogenetic branching. J. Phys. A Math. Gen. 34, L703–707. MATHCrossRefMathSciNetGoogle Scholar
  14. Klaere, S., Gesell, T., Haeseler, A.v, 2008, in press. The impact of single substitutions on multiple sequence alignments. Proc. R. Soc. Lond. B. 275. Google Scholar
  15. Steel, M.A., Hendy, M.D., Székely, L.A., Erdős, P.L., 1992. Spectral analysis and a closest tree method for genetic sequences. Appl. Math. Lett. 5(6), 63–67. MATHCrossRefMathSciNetGoogle Scholar
  16. Sturmfels, B., Sullivant, S., 2005. Toric ideals of phylogenetic invariants. J. Comput. Biol. 12(2), 204–228. CrossRefGoogle Scholar
  17. Swofford, D., Olsen, G.J., Waddell, P.J., Hillis, D.M., 1996. Phylogenetic inference. In: Hillis, D.M., Moritz, C., Mable, B.K. (Eds.), Molecular Systematics, 2nd edn., pp. 407–514. Sinauer, Sunderland. Google Scholar
  18. Székely, L.A., Erdős, P.L., Steel, M.A., Penny, D., 1993a. A Fourier inversion formula for evolutionary trees. Appl. Math. Lett. 6(2), 13–16. MATHCrossRefMathSciNetGoogle Scholar
  19. Székely, L.A., Steel, M.A., Erdős, P.L., 1993b. Fourier calculus on evolutionary trees. Adv. Appl. Math. 14(2), 200–210. MATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations