Bulletin of Mathematical Biology

, Volume 71, Issue 1, pp 25–74 | Cite as

A Dynamical Study of a Cellular Automata Model of the Spread of HIV in a Lymph Node

Original Article

Abstract

We conduct a mathematical study of a cellular automata model of the spread of the HIV virus in a lymph node. The model was proposed by Zorzenon dos Santos and Coutinho and captures the unique time scale of the viral spread. We give some rigorous mathematical results about the time scales and other dynamical aspects of the model as well as discuss parameter and model changes and their consequences.

Keywords

Cellular automata Dynamical systems Virus spread 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allouche, J., Courbage, M., Skordev, G., 2001. Notes on cellular automata. Cubo Mat. Educ. 3(2), 213–244. MATHMathSciNetGoogle Scholar
  2. Bernaschi, M., Castiglione, F., 2002. Selection of escape mutants from the immune recognition during HIV infection. Immunol. Cell Biol. 80, 307–313. CrossRefGoogle Scholar
  3. Blanchard, F., Tisseur, P., 2000. Some properties of cellular automata with equicontinuity points. Ann. Inst. Henri Poincaré Probab. Stat. 36(5), 569–582. MATHCrossRefMathSciNetGoogle Scholar
  4. Fauci, A., Pantaleo, G., Stanley, S., Weissman, D., 1996. Immunopathogenic mechanisms of HIV infection. Ann. Int. Med. 124(7), 654–663. Google Scholar
  5. Feinberg, M.B., 2002. The interface between the pathogenesis and treatment of HIV infection. In: The Human Immunodeficiency Virus: Biology, Immunology, and Therapy, pp. 384–440. Princeton University Press, Princeton. Google Scholar
  6. Gamber, E., 2006. Equicontinuity properties of D-dimensional cellular automata. Topol. Proc. 30(1), 197–222. Spring Topology and Dynamical Systems Conference. MATHMathSciNetGoogle Scholar
  7. Gamber Burkhead, E., 2008. A topological classification of D-dimensional cellular automata. Dyn. Syst. Int. J. to appear Google Scholar
  8. Haase, A.T., 1999. Population biology of HIV-1 infection: Viral and CD4+T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 17, 625–656. CrossRefGoogle Scholar
  9. Hawkins, J., Molinek, D., 2007. One-dimensional stochastic cellular automata. Topol. Proc. 31(2), 515–532. Google Scholar
  10. Hedlund, G.A., 1969. Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375. MATHCrossRefMathSciNetGoogle Scholar
  11. Hubbs, J., 2006. A probabilistic cellular automaton model of the spread of the HIV virus. Master’s project. University of North Carolina at Chapel Hill. Google Scholar
  12. Ilachinski, A., 2001. Cellular automata. A discrete universe. World Scientific, River Edge. MATHGoogle Scholar
  13. Kari, J., 2005. Theory of cellular automata: A survey. Theor. Comput. Sci. 334, 3–33. MATHCrossRefMathSciNetGoogle Scholar
  14. Kitchens, B.P., 1998. Symbolic dynamics: one-sided, two-sided and countable state Markov shifts. Universitext, Springer, Berlin. MATHGoogle Scholar
  15. Kůrka, P., 2001. Topological dynamics of cellular automata. In: Codes, Systems, and Graphical Models (Minneapolis, MN, 1999). IMA Vol. Math. Appl., vol. 123, pp. 447–485. Springer, Berlin Google Scholar
  16. Lind, D., Marcus, B., 1995. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge. MATHGoogle Scholar
  17. Nowak, M.A., May, R.M., 2000. Virus dynamics. Mathematical principles of immunology and virology. Oxford University Press, Oxford. MATHGoogle Scholar
  18. Pantaleo, G., Fauci, A.S., 1996. Immunopathogenesis of HIV infection. Ann. Rev. Microbiol. 50, 825–854. CrossRefGoogle Scholar
  19. Pantaleo, G., Graziosi, C., Fauci, A., 1993. The immunopathogenesis of human immunodeficiency virus infection. New Engl. J. Med. 328(5), 327–335. CrossRefGoogle Scholar
  20. Schnittman, S.M., et al., 1989. The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 245(4915), 305–308. CrossRefGoogle Scholar
  21. Sinaĭ, Y.G., 1994. Topics in ergodic theory, Volume 44 of Princeton Mathematical Series. Princeton University Press, Princeton. MATHGoogle Scholar
  22. Strain, M.C., Levine, H., 2002. Comment on “Dynamics of HIV infection: A cellular automata approach”. Phys. Rev. Lett. 89(21), 219805–1. CrossRefGoogle Scholar
  23. Walters, P., 1982. An introduction to ergodic theory. Springer, Berlin. MATHGoogle Scholar
  24. Wolfram, S., 1984. Universality and complexity in cellular automata. Physica D 10(1–2), 1–35. Cellular automata (Los Alamos, NM, 1983). CrossRefMathSciNetGoogle Scholar
  25. Wolfram, S., 2002. A new kind of science. Wolfram Media, Champaign. MATHGoogle Scholar
  26. Zhang, Z.-Q., et al., 1998. Kinetics of CD4+T cell repopulation by lymphoid tissues after treatment of HIV-1 infection. Proc. Natl. Acad. Sci. 95, 1154–1159. CrossRefGoogle Scholar
  27. Zorzenon dos Santos, R.M., Coutinho, S., 2001. Dynamics of HIV infection: A cellular automata approach. Phys. Rev. Lett. 87(16), 168102-1–168102-4. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  • E. G. Burkhead
    • 1
  • J. M. Hawkins
    • 2
  • D. K. Molinek
    • 3
  1. 1.Department of Mathematics and Computer ScienceMeredith CollegeRaleighUSA
  2. 2.Department of MathematicsUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of MathematicsDavidson CollegeDavidsonUSA

Personalised recommendations