Advertisement

Persistence and Spread of Gastro-Intestinal Infections: the Case of Enterotoxigenic Escherichia coli in Piglets

  • Barbara Boldin
Original Article

Abstract

Several gastro-intestinal infections in animal husbandry not only greatly reduce the well-being of animals, but also have the potential to cause large economical damage. Understanding of the dynamics of such diseases is thus of great importance. In this paper, we focus on within-host dynamics and present a model describing the dynamics of pathogens in the intestine of a single host. Our motivation to study the problem stems from the case of enterotoxigenic Escherichia coli in newly weaned piglets, but the models we present offer an acceptable description of within-host dynamics of several other gastro-intestinal infections. We begin by studying the case where infection is a one-time event and derive an explicit expression for the distribution of pathogens inside the intestine at an arbitrary time after the infection took place. Since farm animals often come into contact with faeces, we furthermore investigate the reinfection case, in which a fraction of the shed pathogens is reintroduced into the intestine. We find the condition that guarantees persistence of colonization in the reinfection case and determine when the microbial distribution in the intestine obeys the so called asynchronous exponential growth. We outline possibilities for infection control and point out some challenges for further research on the subject.

Keywords

Within-host dynamics Post-weaning diarrhoea Gastro-intestinal infection Population model Semigroup Malthusian parameter Spectral bound Asynchronous exponential growth Enterotoxigenic Escherichia Coli Gut Bacteria 

References

  1. Ballyk, M., Smith, H., 1999. A model of microbial growth in a plug flow reactor with wall attachment. Math. Biosci. 158, 95–26. zbMATHCrossRefMathSciNetGoogle Scholar
  2. Ballyk, M., Dung, L., Jones, D.A., Smith, H.L., 1999. Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math. 59(2), 573–96. zbMATHMathSciNetGoogle Scholar
  3. Callesen, J., Halas, D., Thorup, F., Knudsen, K.E.B., Kim, J.C., Mullan, B.P., Hampson, D.J., Wilson, R.H., Pluske, J.R., 2007. The effects of weaning age, diet composition, and categorisation of creep feed intake by piglets on diarrhoea and performance after weaning. Livest. Sci. 108(1–), 120–23. CrossRefGoogle Scholar
  4. Carstensen, L., Ersboll, A.K., Jensen, K.H., Nielsen, J.P., 2005. Escherichia coli post-weaning diarrhoea occurrence in piglets with monitored exposure to creep feed. Vet. Microbiol. 110(1–), 113–23. CrossRefGoogle Scholar
  5. Clément, Ph., Heijmans, H.J.A.M., Angenent, S., van Duijn, C.J., de Pagter, B., 1987. One-Parameter Semigroups, CWI Monographs, vol. 5. North-Holland, Amsterdam. zbMATHGoogle Scholar
  6. Derndinger, R., 1980. Über das Spektrum positiver Generatoren. Math. Z. 172, 281–93. zbMATHCrossRefMathSciNetGoogle Scholar
  7. Diekmann, O., Heijmans, H.J.A.M., Thieme, H.R., 1984. On the stability of the cell size distribution. J. Math. Biol. 19, 227–48. zbMATHCrossRefMathSciNetGoogle Scholar
  8. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme, H.R., 1998. On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Math. Biol. 36(4), 349–88. zbMATHCrossRefMathSciNetGoogle Scholar
  9. Dunford, N., Schwartz, J.T., 1958. Linear Operators. I. General Theory, Pure and Applied Mathematics, vol. 7. Interscience Publishers, New York. With the assistance of W.G. Bade and R.G. Bartle. zbMATHGoogle Scholar
  10. Engel, K.J., Nagel, R., 2000. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, New York. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. zbMATHGoogle Scholar
  11. Geenen, P., 2005. F4+Escherichia coli in piglets: effect of host characteristics on population dynamics. PhD Thesis, University Utrecht, The Netherlands. Google Scholar
  12. Geenen, P.L., Van der Meulen, J., Bouma, A., De Jong, M.C.M., 2004. Estimating transmission parameters of F4+E-coli for F4-receptor-positive and -negative piglets: one-to-one transmission experiment. Epidemiol. Infect. 132(6), 1039–048. CrossRefGoogle Scholar
  13. Geenen, P.L., Van der Meulen, J., Bouma, A., Engel, B., Heesterbeek, J.A.P., De Jong, M.C.M., 2007. Classification of temporal profiles of F4+E-Coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs. Epidemiol. Infect. 135(6), 1001–009. CrossRefGoogle Scholar
  14. Gyllenberg, M., Webb, G.F., 1987. Age-size structure in populations with quiescence. Math. Biosci. 86, 67–5. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Melin, L., Mattsson, S., Katouli, M., Wallgren, P., 2004. Development of post-weaning diarrhoea in piglets. Relation to presence of Escherichia coli strains and rotavirus. J. Vet. Med. Ser. B Infect. Dis. Vet. Public Heal. 51(1), 12–2. Google Scholar
  16. Pachepsky, E., Lutscher, F., Nisbet, R.M., Lewis, M.A., 2005. Persistence, spread and the drift paradox. Theor. Popul. Biol. 67, 61–3. zbMATHCrossRefGoogle Scholar
  17. Pluske, J.R., Kim, J.C., Hansen, C.F., Mullan, B.P., Payne, H.G., Hampson, D.J., Callesen, J., Wilson, R.H., 2007. Piglet growth before and after weaning in relation to a qualitative estimate of solid (creep) feed intake during lactation: A pilot study. Arch. Anim. Nutr. 61, 469–80. CrossRefGoogle Scholar
  18. Renardy, M., Rogers, R.C., 2004. An Introduction to Partial Differential Equations, 2nd edn., Texts in Applied Mathematics, vol. 13. Springer, New York. zbMATHGoogle Scholar
  19. Rudin, W., 1991. Functional Analysis, 2nd edn., International Series in Pure and Applied Mathematics. McGraw-Hill, New York. zbMATHGoogle Scholar
  20. Wellock, I.J., Fortomaris, P.D., Houdijk, J.G.M., Kyriazakis, I., 2006. The effect of dietary protein supply on the performance and risk of post-weaning enteric disorders in newly weaned pigs. Anim. Sci. 82(3), 327–35. CrossRefGoogle Scholar
  21. Zhang, W.P., Zhao, M.J., Ruesch, L., Omot, A., Francis, D., 2007. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet. Microbiol. 123(1–), 145–52. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations