A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia

Original Article


We derive a model for describing the dynamics of imatinib-treated chronic myelogenous leukemia (CML). This model is a continuous extension of the agent-based CML model of Roeder et al. (Nat. Med. 12(10), 1181–1184, 2006) and of its recent formulation as a system of difference equations (Kim et al. in Bull. Math. Biol. 70(3), 728–744, 2008). The new model is formulated as a system of partial differential equations that describe various stages of differentiation and maturation of normal hematopoietic cells and of leukemic cells.

An imatinib treatment is also incorporated into the model. The simulations of the new PDE model are shown to qualitatively agree with the results that were obtained with the discrete-time (difference equation and agent-based) models. At the same time, for a quantitative agreement, it is necessary to adjust the values of certain parameters, such as the rates of imatinib-induced inhibition and degradation.


Chronic myelogenous leukemia Gleevec Imatinib Mathematical models Agent-based models Difference equations Partial differential equations 


  1. Abbott, L.H., Michor, F., 2006. Mathematical models of targeted cancer therapy. Br. J. Cancer. 95(9), 1136–141. CrossRefGoogle Scholar
  2. Adimy, M., Pujo-Menjouet, L., 2003. A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electron. J. Differ. Equ. 2003(107), 1–4. MathSciNetGoogle Scholar
  3. Campbell, J.D., Cook, G., Holyoake, T.L., 2001. Evolution of bone marrow transplantation—the original immunotherapy. Trends Immunol. 22(2), 88–2. CrossRefGoogle Scholar
  4. Colijn, C., Mackey, M.C., 2005. A mathematical model of hematopoiesis–I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237(2), 117–32. CrossRefMathSciNetGoogle Scholar
  5. DeConde, R., Kim, P.S., Levy, D., Lee, P.P., 2005. Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J. Theor. Biol. 236(1), 39–9. CrossRefMathSciNetGoogle Scholar
  6. Dingli, D., Michor, F., 2006. Successful therapy must eradicate cancer stem cells. Stem Cells 24(12), 2603–610. CrossRefGoogle Scholar
  7. Druker, B.J., Lydon, N.B., 2000. Lessons learned from the development of an ABL tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest. 105(1), 3–. CrossRefGoogle Scholar
  8. Fokas, A.S., Keller, J.B., Clarkson, B.D., 1991. Mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Cancer Res. 51(8), 2084–091. Google Scholar
  9. Kim, P.S., Lee, P.P., Levy, D., 2007. Mini-Transplants for Chronic Myelogenous Leukemia: A Modeling Perspective. In: Queinnec et al. (Eds.), Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences, vol. 357, pp. 3–0. Google Scholar
  10. Kim, P.S., Lee, P.P., Levy, D., 2008. Modeling imatinib-treated chronic myelogenous leukemia: reducing the complexity of agent-based models. Bull. Math. Biol. 70(3), 728–44. MATHCrossRefMathSciNetGoogle Scholar
  11. Komarova, N.L., Wodarz, D., 2005. Drug resistance in cancer: Principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 102(27), 9714–719. CrossRefGoogle Scholar
  12. Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A., 2005. Dynamics of chronic myeloid leukaemia. Nature 435, 1267–270. CrossRefGoogle Scholar
  13. Moore, H., Li, N.K., 2004. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 225(4), 513–23. CrossRefMathSciNetGoogle Scholar
  14. Neiman, B., 2002. A mathematical model of chronic myelogenous leukemia. Master’s thesis, University College, Oxford University, UK. Google Scholar
  15. Pujo-Menjouet, L., Mackey, M.C., 2004. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biol. 327, 235–44. CrossRefGoogle Scholar
  16. Roeder, I., 2003. Dynamical modeling of hematopoietic stem cell organization—Design and validation of the new concept of within-tissue plasticity. PhD thesis, University of Leipzig, Germany. Google Scholar
  17. Roeder, I., Glauche, I., 2008. Pathogenesis, treatment effects, and resistance dynamics in chronic myeloid leukemia—insights from mathematical model analyses. J. Mol. Med. 85(1), 17–7. CrossRefGoogle Scholar
  18. Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M., 2006. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10), 1181–184. CrossRefGoogle Scholar
  19. Thijsen, S.F.T., Schuurhuis, G.J., van Oostveen, J.W., Ossenkoppele, G.J., 1999. Chronic mlyeloid leukemia from basics to bedside. Leukemia 13(11), 1646–674. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  1. 1.Laboratoire des Signaux et SystèmesÉcole Supérieure d’ÉlectricitéGif-sur-YvetteFrance
  2. 2.Division of Hematology, Department of MedicineStanford UniversityStanfordUSA
  3. 3.Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM)University of MarylandCollege ParkUSA

Personalised recommendations