Epidemic Models with Heterogeneous Mixing and Treatment

Original Article


We consider a two-group epidemic model with treatment and establish a final size relation that gives the extent of the epidemic. This relation can be established with arbitrary mixing between the groups even though it may not be feasible to determine the reproduction number for the model. If the mixing of the two groups is proportionate, there is an explicit expression for the reproductive number and the final size relation is expressible in terms of the components of the reproduction number. We also extend the results to a two-group influenza model with proportionate mixing. Some numerical simulations suggest that (i) the assumption of no disease deaths is a good approximation if the disease death rate is small and (ii) a one-group model is a close approximation to a two-group model but a two-group model is necessary for comparing targeted treatment strategies.


Epidemic models Final size relation Heterogeneous mixing 


  1. Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J., 2006. Simple models for containment of a pandemic. J. R. Soc. Interface 3, 453–57. CrossRefGoogle Scholar
  2. Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J., 2007. A final size relation for epidemic models. Math. Biosci. Eng. 4, 159–76. MATHMathSciNetGoogle Scholar
  3. Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J., 2008. A model for influenza with vaccination and antiviral treatment. Math. Biosci. Eng. 5, 118–30. Google Scholar
  4. Bansal, S., Pourbohloul, B., Meyers, L.A., 2006. A comparative analysis of influenza vaccination programs. PLoS Med. 3, 1816–825. CrossRefGoogle Scholar
  5. Brauer, F., 2005. The Kermack-McKendrick epidemic model revisited. Math. Biosci. 198, 119–31. MATHCrossRefMathSciNetGoogle Scholar
  6. Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester. Google Scholar
  7. Duerr, H.P., Brockmann, S.O., Piechotowski, I., Schwenn, M., Eichner, M., 2007. Influenza pandemic intervention planning using InfluSim: pharmaceutical and non-pharmaceutical interventions. BMC Infect. Dis. 7, 76–0. CrossRefGoogle Scholar
  8. Dushoff, J., Plotkin, J.B., Viboud, C., Simonsen, L., Miller, M., Loeb, M., Earn, D.J.D., 2007. Vaccinating to protect a vulnerable subpopulation. PLoS Med. 4, 921–27. CrossRefGoogle Scholar
  9. Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S., 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–14. CrossRefGoogle Scholar
  10. Gani, R., Hughes, H., Griffin, T., Medlock, J., Leach, S., 2005. Potential impact of antiviral use on hospitalizations during influenza pandemic. Emerg. Infect. Dis. 11, 1355–362. Google Scholar
  11. Longini, I.M., Halloran, M.E., 2005. Strategy for distribution of influenza vaccine to high-risk groups and children. Am. J. Epidem. 161, 303–06. CrossRefGoogle Scholar
  12. Longini, I.M., Halloran, M.E., Nizam, A., Yang, Y., 2004. Containing pandemic influenza with antiviral agents. Am. J. Epidem. 159, 623–33. CrossRefGoogle Scholar
  13. Longini, I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A.T., Halloran, M.E., 2005. Containing pandemic influenza at the source. Science 309, 1083–087. CrossRefGoogle Scholar
  14. Ma, J., Earn, D.J.D., 2006. Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68, 679–02. CrossRefMathSciNetGoogle Scholar
  15. Meyers, L.A., 2007. Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44, 63–6. MATHCrossRefMathSciNetGoogle Scholar
  16. Nold, A., 1980. Heterogeneity in disease transmission modeling. Math. Biosci. 52, 227–40. MATHCrossRefMathSciNetGoogle Scholar
  17. Nuño, M., Chowell, G., Gumel, A.B., 2007. Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands. J. R. Soc. Interface 4, 505–21. CrossRefGoogle Scholar
  18. van den Driessche, P., Watmough, J., 2002. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–8. MATHCrossRefMathSciNetGoogle Scholar
  19. Welliver, R., Monto, A.S., Carewicz, O., Schatteman, E., Hassman M, M., Hedrick, J., Jackson, H.C., Huson, L., Ward, P., Oxford, J.S., 2001. Effectiveness of oseltamivir in preventing influenza in household contacts: a randomized controlled trial. JAMA 285, 748–54. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations