Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations

  • M. J. Tindall
  • P. K. Maini
  • S. L. Porter
  • J. P. Armitage
Original Article


We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller–Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated.


Bacterial chemotaxis Population modeling Multi-scale modeling Review 


  1. Adler, J., 1966. Chemotaxis in bacteria. Science 153, 708–716. Google Scholar
  2. Adler, J., 1969. Chemoreceptors in bacteria. Science 166(3913), 1588–1597. Google Scholar
  3. Adler, J., Dahl, M., 1967. A method for measuring the motility of bacteria and for comparing random and non-random motility. J. Gen. Microbiol. 46(2), 161–173. Google Scholar
  4. Alt, W., 1980. Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177. MATHMathSciNetGoogle Scholar
  5. Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirok, A., Vicsek, T., 1994. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46–49. Google Scholar
  6. Ben-Jacob, E., Cohen, I., Schochet, O., 1995. Complex bacterial patterns. Nature 373, 566–569. Google Scholar
  7. Berg, H., 1996. Symmetries in bacterial motility. Proc. Natl. Acad. Sci. 93, 14225–14228. Google Scholar
  8. Berg, H., Brown, D., 1972. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature 239, 500–504. Google Scholar
  9. Berg, H., Turner, L., 1990. Chemotaxis of bacteria in glass capillary assays. Biophys. J. 58, 919–930. Google Scholar
  10. Berg, H., Turner, L., 1993. Torque generated by the flagellar motor of Escherichia coli. Biophys. J. 65, 2201–2216. Google Scholar
  11. Block, S., Segall, J., Berg, H., 1983. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323. Google Scholar
  12. Boon, J.-P., Herpigny, B., 1986. Model for chemotactic bacterial bands. Bull. Math. Biol. 48, 1–19. MATHGoogle Scholar
  13. Bray, D., Bourret, R., 1995. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol. Biol. Cell 6, 1367–1380. Google Scholar
  14. Bray, D., Bourret, R., Simon, M., 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 469–482. Google Scholar
  15. Bray, D., Levin, M., Lipkow, K., 2007. The chemotactic behavior of computer-based surrogate bacteria. Curr. Biol. 17, 12–19. Google Scholar
  16. Brenner, M., Levitov, L., Budrene, E., 1998. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 74(4), 1677–1693. Google Scholar
  17. Brosilow, B., Ford, R., Sarman, S., Cummings, P., 1996. Numerical solution of transport equations for bacterial chemotaxis: Effect of discretization of directional motion. SIAM J. Appl. Math. 56(6), 1639–1663. MATHMathSciNetGoogle Scholar
  18. Brown, D., Berg, H., 1974. Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci. 71(4), 1388–1392. Google Scholar
  19. Budrene, E., Berg, H., 1991. Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633. Google Scholar
  20. Chen, K., Ford, R., Cummings, P., 1998a. The global turning probability density function for motile bacteria and its applications. J. Theor. Biol. 195, 139–155. Google Scholar
  21. Chen, K., Ford, R., Cummings, P., 1998b. Mathematical models for motile bacterial transport in cylindrical tubes. J. Theor. Biol. 195, 481–504. Google Scholar
  22. Chen, K., Ford, R., Cummings, P., 1998c. Perturbation expansion of Alt’s cell balance equations reduces to Segel’s one-dimensional equations for shallow chemoattactant gradient. SIAM J. Appl. Math. 59, 35–57. MathSciNetGoogle Scholar
  23. Chen, K., Ford, R., Cummings, P., 1999. Spatial effect of tumbling frequences for motile bacteria on cell ball equations. Chem. Eng. Sci. 54, 593–617. Google Scholar
  24. Chen, K., Ford, R., Cummings, P., 2003. Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency. J. Math. Biol. 47(6), 518–546. MATHMathSciNetGoogle Scholar
  25. Chiu, C., Hoppensteadt, F., 2001. Mathematical models and simulations of bacterial growth and chemotaxis in a diffusion gradient chamber. J. Math. Biol. 42, 120–144. MATHMathSciNetGoogle Scholar
  26. Clark, D., Grant, L., 2005. The bacterial chemotactic response reflects a compromise between transient and steady-state behaviour. Proc. Natl. Acad. Sci. 102(26), 9150–9155. Google Scholar
  27. Dahlquist, F., Elwell, R., Koshland, D., 1976. Studies of bacterial chemotaxis in defined concentration gradients. J. Supramol. Struct. 4, 329–342. Google Scholar
  28. Dahlquist, F., Lovely, P., Koshland, D., 1972. Quantitative analysis of bacterial migration in chemotaxis. Nat. New Biol. 236, 120–123. Google Scholar
  29. Davey, M., O’Toole, G., 2000. Microbial biofilms: from ecology to molecular genetics. Mol. Microbiol. 64(4), 847–867. Google Scholar
  30. de Gennes, P., 2004. Chemotaxis: the role of internal delays. Eur. Biophys. J. 33(8), 691–693. Google Scholar
  31. Dillon, R., Fauci, L., Gaver, D., 1995. A microscale model of bacterial swimming, chemotaxis and substrate transport. J. Theor. Biol. 177, 325–340. Google Scholar
  32. D’Orsogna, M., Suchard, M., Chou, T., 2003. Interplay of chemotaxis and chemokinesis mechanisms in bacterial dynamics. Phys. Rev. E 68, 1–10. Google Scholar
  33. Eisenbach, M., Lengeler, J., Varon, M., Gutnick, D., Meili, R., Firtel, R., Segall, J., Omann, G., Tamada, A., Murakami, F., 2004. Chemotaxis. Imperial College Press, London. Google Scholar
  34. Emerson, D., Worden, R., Breznak, J., 1994. A diffusion gradient chamber for studying microbial behavior and separating microorganism. Appl. Environ. Microbiol. 60(4), 1269–1278. Google Scholar
  35. Emonet, T., Macal, C., North, M., Wickersham, C., Cluzel, P., 2005. Agentcell: A digital single-cell assay for bacterial chemotaxis. Bioinformatics 21(11), 2714–2721. Google Scholar
  36. Engelmann, T., 1881a. Neue methode zur untersuchung der sauerstoffaussheidung pflanzlicher und thierischer organismen. Pflugers Arch. Gesamte Physiol. Menschen Tiere 25, 285–292. Google Scholar
  37. Engelmann, T., 1881b. Zur biologie der schizomyceten. Pflugers Arch. Gesamte Physiol. 26, 537. Google Scholar
  38. Erban, R., Othmer, H., 2004. From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65, 361–391. MATHMathSciNetGoogle Scholar
  39. Erban, R., Othmer, H., 2005. From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modelling in biology. Multiscale Model. Simul. 3(2), 362–394. MATHMathSciNetGoogle Scholar
  40. Ford, R., Cummings, P., 1992. On the relationship between cell balance equations for chemotaxis cell populations. SIAM J. Appl. Math. 52(5), 1426–1441. MATHMathSciNetGoogle Scholar
  41. Ford, R., Lauffenburger, D., 1991a. Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow or gradients. Bull. Math. Biol. 53, 721–749. MATHGoogle Scholar
  42. Ford, R., Lauffenburger, D., 1991b. Measurement of bacterial random motility and chemotaxis coefficients I : Stopped-flow diffusion chamber assay. Biotech. Bioeng. 37, 647–660. Google Scholar
  43. Ford, R., Quinn, J., Philips, B., Lauffenburger, D., 1991. Measurement of bacterial random motility and chemotaxis coefficients II: Application of single cell-based mathematical model. Biotech. Bioeng. 37, 661–672. Google Scholar
  44. Frymier, P., Ford, R., Cummings, P., 1993. Cellular dynamics simulation of bacterial chemotaxis. Chem. Eng. Sci. 48(4), 687–699. Google Scholar
  45. Frymier, P., Ford, R., Cummings, P., 1994. Analysis of bacterial migration: I. Numerical solution of balance equation. AIChE J. 40(4), 704–715. Google Scholar
  46. Futrelle, R., Berg, H., 1972. Specification of gradients used for studies of chemotaxis. Nature 239, 517–518. Google Scholar
  47. Goto, T., Nakata, K., Baba, K., Nishimura, M., Magariyama, Y., 2005. A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary. Biophys. J. 89(6), 3771–3779. Google Scholar
  48. Grimm, A., Harwood, C., 1997. Chemotaxis of Pseudomonas spp. to the polayaromatic hydrocarbon, napthalene. Appl. Environ. Microbiol. 63, 4111–4115. Google Scholar
  49. Grimson, M., Barker, G., 1994. Continuum model for the spatiotemporal growth of bacterial colonies. Phys. Rev. E 49(2), 1680–1684. Google Scholar
  50. Herpigny, B., Boon, J., Lavalle, R., 1984. Bacterial chemotaxis and band formation: Response to the simultaneous effects of two attractants. Unpublished experimental results. Google Scholar
  51. Hillen, T., Othmer, H., 2000. The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775. MATHMathSciNetGoogle Scholar
  52. Hillesdon, A., Pedley, T., Kessler, J., 1995. The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57(2), 299–334. MATHGoogle Scholar
  53. Hilpert, M., 2005. Lattice-Boltzman model for bacterial chemotaxis. J. Math. Biol. 51(3), 302–332. MATHMathSciNetGoogle Scholar
  54. Holz, M., Chen, S., 1979. Spatio-temporal structure of migrating chemotactic band of Escherichia coli. I. Travelling band profile. Biophys. J. 26, 243–261. Google Scholar
  55. Hornberger, G., Mills, A., Herman, J., 1992. Bacterial transport in porous media: Evaluation of a model using laboratory observations. Water Resour. Res. 28(3), 915–938. Google Scholar
  56. Horstmann, D., 2003a. From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105(3), 103–165. MATHMathSciNetGoogle Scholar
  57. Horstmann, D., 2003b. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II. Jahresber. DMV 106(2), 51–69. MathSciNetGoogle Scholar
  58. Keller, E., Odell, G., 1975. Necessary and sufficient conditions for chemotactic bands. Math. Biosci. 27, 309–317. MATHMathSciNetGoogle Scholar
  59. Keller, E., Segel, L., 1970. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415. Google Scholar
  60. Keller, E., Segel, L., 1971a. Model for chemotaxis. J. Theor. Biol. 30(2), 225–234. Google Scholar
  61. Keller, E., Segel, L., 1971b. Travelling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30(2), 235–248. Google Scholar
  62. Kelly, F., Dapsis, K., Lauffenburger, D., 1988. Effect of bacterial chemotaxis on dynamics of microbial competition. Microb. Ecol. 16(2), 115–131. Google Scholar
  63. Kennedy, C., Aris, R., 1980. Travelling waves in a simple population model involving growth and death. B. Math. Biol. 42, 397–429. MATHMathSciNetGoogle Scholar
  64. Korobkova, E., Emonet, T., Vilar, J., Shimizu, T., Cluzel, P., 2004. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578. Google Scholar
  65. Kreft, J., Booth, G., Wimpenny, J., 1998. Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287. Google Scholar
  66. Lapidus, R., Schiller, R., 1974. A mathematical model for bacterial chemotaxis. Biophys. J. 14, 825–834. CrossRefGoogle Scholar
  67. Lapidus, R., Schiller, R., 1975. Bacterial chemotaxis in a fixed attractant gradient. J. Theor. Biol. 53, 215. Google Scholar
  68. Lapidus, R., Schiller, R., 1976. Model for the chemotactic response of a bacterial population. Biophys. J. 16, 779–789. Google Scholar
  69. Lapidus, R., Schiller, R., 1978. A model for travelling bands of chemotactic bacteria. J. Theor. Biol. 22, 1–13. Google Scholar
  70. Lauffenburger, D., Calcagno, B., 1983. Competition between two microbial populations in a nonmixed environment: Effect of cell random motility. Biotech. Bioeng. 25, 2103–2125. Google Scholar
  71. Lauffenburger, D., Aris, R., Keller, K., 1981. Effects of random motility on growth of bacterial populations. Microb. Ecol. 7(3), 207–227. Google Scholar
  72. Lauffenburger, D., Aris, R., Keller, K., 1982. Effects of cell motility and chemotaxis on microbial populations growth. Biophys. J. 40, 209–219. Google Scholar
  73. Lauffenburger, D., Kennedy, C., Aris, R., 1984. Traveling bands of chemotactic bacteria in the context of population growth. B. Math. Biol. 46(1), 19–40. MATHGoogle Scholar
  74. Lauffenburger, D., Rivero, M., Kelly, F., Ford, R., DiRienzo, J., 1987. Bacterial chemotaxis. cell flux model, parameter measurement, population dynamics, and genetic manipulation. Ann. NY Acad. Sci. 506, 281–295. Google Scholar
  75. Lauga, E., DiLuzio, W., Whitesides, G., Stone, H., 2006. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90(2), 400–412. Google Scholar
  76. Lewus, P., Ford, R., 2001. Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays. Biotech. Bioeng. 75(3), 292–304. Google Scholar
  77. Lighthill, J., 1975. Flagellar hydrodynamics: The John von Neumann lecture 1975. SIAM Rev. 18(2), 161–230. MathSciNetGoogle Scholar
  78. Liu, Z., Papadopoulos, K., 1995. Unidirectional motility of Escherichia coli in restrictive capillaries. Appl. Environ. Microbiol. 61(10), 3567–3572. Google Scholar
  79. Lovely, P., Dahlquist, F., 1975. Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50, 477–496. Google Scholar
  80. Macnab, R., Koshland, D., 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. 69(9), 2509–2512. Google Scholar
  81. Maini, P., Myerscough, M., Winters, K., Murray, J., 1991. Bifurcating spatially heterogenous solutions in a chemotaxis model for biological pattern formation. Bull. Math. Biol. 53(5), 701–719. MATHGoogle Scholar
  82. Marx, R., Aitken, M., 1999. Quantification of chemotaxis to naphthalene by Pseudomonas putida G7. Appl. Environ. Microbiol. 65(7), 2847–2852. Google Scholar
  83. Marx, R., Aitken, M., 2000. A material balance approach for modelling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotech. Bioeng. 63, 308–315. Google Scholar
  84. Mazzag, B., Zhulin, I., Mogilner, A., 2003. Model of bacterial band formation in aerotaxis. Biophys. J. 85, 3558–3574. Google Scholar
  85. Mesibov, R., Ordal, G., Adler, J., 1973. The range of attractant concentrations for bacterial chemotaxis and the threshold size of response over this range. J. Gen. Phys. 62, 203–223. Google Scholar
  86. Morton-Firth, C., Shimizu, T., Bray, D., 1999. A free-energy based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286, 1059–1074. Google Scholar
  87. Murray, J., 1993. Mathematical Biology, 2nd edn. Springer, New York. MATHGoogle Scholar
  88. Newman, T., Grima, R., 2004. Many-body theory of chemotactic cell-cell interactions. Phys. Rev. E 70, 051916. Google Scholar
  89. Nossal, R., 1972. Boundary movement of chemotactic bacterial populations. Math. Biosci. 13, 397–406. MATHGoogle Scholar
  90. Nossal, R., Weis, G., 1973. Analysis of a densitometry assay for bacterial chemotaxis. J. Theor. Biol. 41(1), 143–147. Google Scholar
  91. Novick-Cohen, A., Segel, L., 1984. A gradually slowly travelling band of chemotactic bacteria. J. Math. Biol. 19, 125–132. MATHGoogle Scholar
  92. Ockendon, J., Howison, S., Lacey, A., Movchan, A., 1999. Applied Partial Differential Equations. Oxford University Press, Oxford. MATHGoogle Scholar
  93. Odell, G., Keller, E., 1976. Travelling bands of chemotactic bacteria revisited. J. Theor. Biol. 56, 243–247. Google Scholar
  94. Othmer, H., Dunbar, S., Alt, W., 1988. Models of dispersal in biological systems. J. Math. Biol. 26, 263–298. MATHMathSciNetGoogle Scholar
  95. Patlak, C., 1953. Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338. MathSciNetGoogle Scholar
  96. Pedit, J., Marx, R., Miller, C., Aitken, M., 2002. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. Biotech. Bioeng. 78(6), 626–634. Google Scholar
  97. Pedley, T., Kessler, J., 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313–358. MathSciNetGoogle Scholar
  98. Pfeffer, W., 1888. Uber chemotaktische bewegungen von bacterien, flagellaten and volvocineen. Untersuch. Bot. Inst. Tübingen 2, 582. Google Scholar
  99. Ramia, M., Tullock, D., Phan-Thien, N., 1993. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65, 755–778. Google Scholar
  100. Reynolds, P., Sharma, P., Jenneman, G., McInerney, M., 1989. Mechanisms of microbial movement in subsurface materials. Appl. Environ. Microbiol. 55(9), 2280–2286. Google Scholar
  101. Rivero, M., Tranquillo, R., Buettner, H., Lauffenburger, D., 1989. Transport models for chemotactic cell populations based on individual cell behaviour. Chem. Eng. Sci. 44(12), 2881–2897. Google Scholar
  102. Rivero-Hudec, M., Lauffenburger, D., 1986. Quantification of bacterial chemotaxis by measurement of model parameters using the capillary assay. Biotech. Bioeng. 28, 1178–1190. Google Scholar
  103. Romagnoli, S., 2002. Role of redoc sensing in controlling Rhodobacter sphaeroides swimming behaviour. PhD thesis, Department of Biochemistry, University of Oxford. Google Scholar
  104. Rosen, G., 1973. Fundamental theoretical aspects of bacterial chemotaxis. J. Theor. Biol. 41, 201–208. Google Scholar
  105. Rosen, G., 1974. On the propagation theory for bands of chemotactic bacteria. Math. Biosci. 20, 185–189. MATHGoogle Scholar
  106. Rosen, G., 1975. Analytical solution to the initial value problem for traveling bands of chemotactic bacteria. J. Theor. Biol. 49, 311–321. Google Scholar
  107. Rosen, G., 1976. Existence and nature of band solutions to generic chemotactic transport equations. J. Theor. Biol. 59, 243–246. Google Scholar
  108. Rosen, G., 1983. Theoretical significance of the condition δ=2μ in bacterial chemotaxis. Bull. Math. Biol. 45(2), 151–153. MATHGoogle Scholar
  109. Rosen, G., Baloga, S., 1975. On the stability of steadily propagating rings of chemotactic bacteria. Math. Biosci. 24, 273–279. MATHMathSciNetGoogle Scholar
  110. Rosen, G., Baloga, S., 1976. On the structure of steadily propagating rings of chemotactic bacteria. J. Mechanochem. Cell Motility 3, 225–228. Google Scholar
  111. Schnitzer, M., 1993. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48(4), 2553–2568. MathSciNetGoogle Scholar
  112. Schnitzer, M., Block, S., Berg, H., Purcell, E., 1990. Strategies for chemotaxis. Symp. Soc. Gen. Microbiol. 46, 15–34. Google Scholar
  113. Scribner, T., Segel, L., Rogers, E., 1974. A numerical study of the formation and propagation of travelling bands of chemotactic bacteria. J. Theor. Biol. 46, 189–219. Google Scholar
  114. Segel, L., 1976. Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57, 23–42. MathSciNetGoogle Scholar
  115. Segel, L., 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32(3), 653–665. MATHMathSciNetGoogle Scholar
  116. Segel, L., Jackson, L., 1973. Theoretical analysis of chemotactic movements in bacteria. J. Mechanochem. Cell Motility 2, 25–34. Google Scholar
  117. Setayeshgar, S., Gear, C., Othmer, H., Kevrekidis, I., 2005. Application of coarse integration to bacterial chemotaxis. Multiscale Model. Simul. 4(1), 307–327. MATHMathSciNetGoogle Scholar
  118. Stroock, D., 1974. Some stochastic processes which arise from a model of the motion of a bacterium. Z. Wahrsch. Verw. Geb. 28, 305–315. MATHGoogle Scholar
  119. Tindall, M., Porter, S., Maini, P., Gaglia, G., Armitage, J., 2007. Overview of mathematical approaches used to model bacterial chemotaxis I: The single cell. Bull. Math. Biol., submitted. Google Scholar
  120. Wadhams, G., Armitage, J., 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5(12), 1024–1037. Google Scholar
  121. Widman, M., Emerson, D., Chiu, C., Worden, R., 1997. Modelling microbial chemotaxis in a diffusion gradient chamber. Biotech. Bioeng. 55(1), 191–205. Google Scholar
  122. Zhu, M., Murray, J., 1995. Parameter domains for generating spatial pattern: A comparison of reaction-diffusion and cell-chemotaxis models. Int. J. Bifurc. Chaos 5(6), 1503–1524. MATHMathSciNetGoogle Scholar
  123. Zhulin, I., Bespalov, V., Johnson, M., Taylor, B., 1996. Oxygen taxis and proton motive force in Azospirillum brasilense. J. Bacteriol. 178, 5199–5204. Google Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  • M. J. Tindall
    • 1
  • P. K. Maini
    • 1
    • 3
  • S. L. Porter
    • 2
  • J. P. Armitage
    • 2
    • 3
  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordUK
  2. 2.Department of Biochemistry, Microbiology UnitUniversity of OxfordOxfordUK
  3. 3.Oxford Centre for Integrative Systems Biology, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations