Bulletin of Mathematical Biology

, Volume 70, Issue 6, pp 1525–1569 | Cite as

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell

  • M. J. Tindall
  • S. L. Porter
  • P. K. Maini
  • G. Gaglia
  • J. P. Armitage
Review Article

Abstract

Mathematical modeling of bacterial chemotaxis systems has been influential and insightful in helping to understand experimental observations. We provide here a comprehensive overview of the range of mathematical approaches used for modeling, within a single bacterium, chemotactic processes caused by changes to external gradients in its environment. Specific areas of the bacterial system which have been studied and modeled are discussed in detail, including the modeling of adaptation in response to attractant gradients, the intracellular phosphorylation cascade, membrane receptor clustering, and spatial modeling of intracellular protein signal transduction. The importance of producing robust models that address adaptation, gain, and sensitivity are also discussed. This review highlights that while mathematical modeling has aided in understanding bacterial chemotaxis on the individual cell scale and guiding experimental design, no single model succeeds in robustly describing all of the basic elements of the cell. We conclude by discussing the importance of this and the future of modeling in this area.

Keywords

Bacterial chemotaxis Single cell Review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., 1966. Chemotaxis in bacteria. Science 153, 708–716. CrossRefGoogle Scholar
  2. Albert, R., Chiu, Y., Othmer, H., 2004. Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli. Biophys. J. 86, 2650–2659. Google Scholar
  3. Almogy, G., Stone, L., Ben-Tal, N., 2001. Multi-stage regulation, a key to reliable adaptive biochemical pathways. Biophys. J. 81, 3016–3028. Google Scholar
  4. Alon, U., Surette, M., Barkai, N., Leibler, S., 1999. Robustness in bacterial chemotaxis. Nature 397, 168–171. CrossRefGoogle Scholar
  5. Ames, P., Studert, C., Reiser, R., Parkinson, J., 2002. Collaborative signalling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. 99, 7060–7065. CrossRefGoogle Scholar
  6. Andrews, S., Bray, D., 2004. Stochastic simulation of chemical reactions with spatial resolution and singled molecule detail. Phys. Biol. 1, 137–151. CrossRefGoogle Scholar
  7. Armitage, J., 1999. Bacterial tactic response. Adv. Microb. Physiol. 41, 229–289. CrossRefGoogle Scholar
  8. Arocena, M., Acerenza, L., 2004. Necessary conditions for a minimal model of receptor to show adaptive response over a wide range of levels of stimulus. J. Theor. Biol. 229, 45–57. CrossRefMathSciNetGoogle Scholar
  9. Asakura, S., Honda, H., 1984. Two-state model for bacterial chemoreceptor proteins: The role of multiple methylation. J. Math. Biol. 176, 349–367. Google Scholar
  10. Barkai, N., Leibler, S., 1997. Robustness in simple biochemical networks. Nature 387, 913–917. CrossRefGoogle Scholar
  11. Berg, H., 2000. Constraints on models for the flagellar rotary motor. Philos. Trans. R. Soc. Lond. B 355, 491–501. CrossRefGoogle Scholar
  12. Berg, H., 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54. CrossRefGoogle Scholar
  13. Berg, H., Purcell, E., 1977. Physics of chemoreception. Biophys. J. 20, 193–219. Google Scholar
  14. Berry, R., Armitage, J., 1999. The bacterial flagellar motor. Adv. Microb. Physiol. 41, 291–337. CrossRefGoogle Scholar
  15. Beyerinck, M., 1895. Ueber Spirillum desulfuricans als ursache von sulfatreduction. Zentralbl. Bakteriol. Parasitenkd. 1, 1–9, 49–59, 104–14. Google Scholar
  16. Bialek, W., Setayeshgar, S., 2005. Physical limits to biochemical signalling. Proc. Natl. Acad. Sci. 102(29), 10040–10045. CrossRefGoogle Scholar
  17. Block, S., Segall, J., Berg, H., 1982. Impulse response in bacterial chemotaxis. Cell 31, 215–226. CrossRefGoogle Scholar
  18. Block, S., Segall, J., Berg, H., 1983. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323. Google Scholar
  19. Bornhorst, J., Falke, J., 2001. Evidence that both ligand binding and covalent adaptation drive a two-state model equilibrium in the aspartate receptor signalling complex. J. Gen. Phys. 118, 693–710. CrossRefGoogle Scholar
  20. Bornhorst, J., Falke, J., 2003. Quantitative analysis of aspartate receptor signalling complex reveals that the homogenous two-state model is inadequate: Development of a heterogenous two-state model. J. Mol. Biol. 326, 1597–1614. CrossRefGoogle Scholar
  21. Bray, D., 2002. Bacterial chemotaxis and the question of gain. Proc. Natl. Acad. Sci. 99(1), 7–9. MathSciNetGoogle Scholar
  22. Bray, D., Bourret, R., 1995. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol. Biol. Cell 6, 1367–1380. Google Scholar
  23. Bray, D., Duke, T., 2004. Conformational spread: The propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33(1), 53–73. CrossRefGoogle Scholar
  24. Bray, D., Bourret, R., Simon, M., 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 469–482. Google Scholar
  25. Bray, D., Levin, M., Morton-Firth, C., 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393(7), 85–88. CrossRefGoogle Scholar
  26. Bren, A., Eisenbach, M., 2000. How signals are heard during bacterial chemotaxis: Protein–protein interactions in sensory signal propagation. J. Bacteriol. 182(24), 6865–6873. CrossRefGoogle Scholar
  27. Crissman, H., Darzynkiewicz, Z., Tobey, R., Steinkamp, J., 1985. Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science 228, 1321–1324. CrossRefGoogle Scholar
  28. Darzynkiewicz, Z., Crissman, H., Traganos, F., Steinkamp, J., 1982. Cell heterogeneity during the cell cycle. J. Cell Physiol. 113, 465–474. CrossRefGoogle Scholar
  29. Delbrück, M., Reichardt, W., 1956. System analysis for the light growth reactions of Phycomyces. In D. Rudnick (Ed.), Cellular Mechanisms in Differentation and Growth, pp. 3–44. Princeton University Press, Princeton. Google Scholar
  30. Duke, T., Bray, D., 1999. Heightened sensitivity of a lattice of membrane receptors. Proc. Natl. Acad. Sci. 96, 10104–10108. CrossRefGoogle Scholar
  31. Duke, T., Novére, N.L., Bray, D., 2001. Conformational spread in a ring of proteins: A stochastic approach to allostery. J. Mol. Biol. 308, 541–553. CrossRefGoogle Scholar
  32. Eisenbach, M., 1990. Control of bacterial chemotaxis. Mol. Microbiol. 20, 903–910. CrossRefGoogle Scholar
  33. Eisenbach, M., Lengeler, J., Varon, M., Gutnick, D., Meili, R., Firtel, R., Segall, J., Omann, G., Tamada, A., Murakami, F., 2004. Chemotaxis. Imperial College Press, London. Google Scholar
  34. Emonet, T., Macal, C., North, M., Wickersham, C., Cluzel, P., 2005. Agentcell: A digital single-cell assay for bacterial chemotaxis. Bioinformatics 21(11), 2714–2721. CrossRefGoogle Scholar
  35. Endres, R., Wingreen, N., 2006. Precise adaptation in bacterial chemotaxis through “assistance neighbourhoods”. Proc. Natl. Acad. Sci. 103(35), 13040–13044. CrossRefGoogle Scholar
  36. Engelmann, T., 1881a. Neue methode zur untersuchung der sauerstoffaussheidung pflanzlicher und thierischer organismen. Pflugers Arch. Gesamte Physiol. Menschen Tiere 25, 285–292. CrossRefGoogle Scholar
  37. Engelmann, T., 1881b. Zur biologie der schizomyceten. Pflugers Arch. Gesamte Physiol. 26, 537. CrossRefGoogle Scholar
  38. Erban, R., Othmer, H., 2004. From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65, 361–391. MATHCrossRefMathSciNetGoogle Scholar
  39. Erban, R., Othmer, H., 2005. From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modelling in biology. Multiscale Model. Simul. 3(2), 362–394. MATHCrossRefMathSciNetGoogle Scholar
  40. Garrity, L., Ordal, G., 1995. Chemotaxis in Bacillus subtilis: How bacteria monitor environmental signals. Pharmacol. Ther. 68(1), 87–104. CrossRefGoogle Scholar
  41. Goldbeter, A., Koshland, D., 1982. Simple molecular model for sensing and adaptation based on receptor modification with application to bacterial chemotaxis. J. Mol. Biol. 161, 395–416. CrossRefGoogle Scholar
  42. Goldman, J., Andrews, S., Bray, D., 2004. Size and composition of membrane protein clusters prediced by Monte Carlo analysis. Eur. Biophys. J. 33, 506–512. CrossRefGoogle Scholar
  43. Guo, C., Levine, H., 1999. A thermodynamic model for receptor clustering. Biophys. J. 77(5), 2358–2365. Google Scholar
  44. Guo, C., Levine, H., 2000. A statistical mechanics model for receptor clustering. J. Biol. Phys. 26(3), 219–234. CrossRefGoogle Scholar
  45. Hauri, D., Ross, J., 1995. A model of excitation and adaptation in bacterial chemotaxis. Biophys. J. 68, 708–722. Google Scholar
  46. Kim, S., Wang, W., Kim, K., 2002. Dynamic and clustering model of bacterial chemotaxis receptors: Structural basis for signalling and high sensitivity. Proc. Natl. Acad. Sci. 99(18), 11611–11615. CrossRefGoogle Scholar
  47. Koshland, D., 1977. A response regulator model in a simple sensory system. Science 196, 1055–1063. CrossRefGoogle Scholar
  48. Kreft, J., Booth, G., Wimpenny, J., 1998. Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287. Google Scholar
  49. Kuo, S., Koshland, D., 1989. Multiple kinetic states for the flagellar motor switch. J. Bacteriol. 171(11), 6279–6287. Google Scholar
  50. Levin, M., Morton-Firth, C., Abouhamad, W., Bourret, R., Bray, D., 1998. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175–181. CrossRefGoogle Scholar
  51. Levin, M., Shimizu, T., Bray, D., 2002. Binding and diffusion of CheR molecules within a cluster of membrane receptors. Biophys. J. 82, 1809–1817. Google Scholar
  52. Levit, M., Stock, J., 2002. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J. Biol. Chem. 277(39), 36760–36765. CrossRefGoogle Scholar
  53. Li, G., Weis, R., 2000. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100, 357–365. CrossRefGoogle Scholar
  54. Li, M., Hazelbauer, G.L., 2005. Adaptational assistance in clusters of bacterial chemoreceptors. Mol. Microbiol. 56(6), 1617–1626. CrossRefGoogle Scholar
  55. Lipkow, K., 2006. Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput. Biol. 2(4), 301–310. CrossRefGoogle Scholar
  56. Lipkow, K., Andrews, S., Bray, D., 2005. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol. 187(1), 45–53. CrossRefGoogle Scholar
  57. Lybarger, S., Maddock, J., 2001. Polarity in action: Asymmetric protein localization in bacteria. J. Bacteriol. 183(11), 3261–3267. CrossRefGoogle Scholar
  58. Macnab, R., Koshland, D., 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. 69(9), 2509–2512. CrossRefGoogle Scholar
  59. Maddock, J., Shapiro, L., 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259(9), 1717–1723. CrossRefGoogle Scholar
  60. Mello, B., Tu, Y., 2003a. Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys. J. 84, 2943–2956. Google Scholar
  61. Mello, B., Tu, Y., 2003b. Quantitative modeling of sensitivity in bacterial chemotaxis: The role of coupling among different chemoreceptor species. Proc. Natl. Acad. Sci. 100(14), 8223–8228. CrossRefGoogle Scholar
  62. Mello, B., Tu, Y., 2005. An allosteric model for heterogeneous receptor complexes: Understanding bacterial chemotaxis responses to multiple stimuli. Proc. Natl. Acad. Sci. 102(48), 17354–17359. CrossRefGoogle Scholar
  63. Mello, B., Shaw, L., Tu, Y., 2004. Effects of receptor interaction in bacterial chemotaxis. Biophys. J. 87, 1578–1595. CrossRefGoogle Scholar
  64. Metzler, R., Klafter, J., 2000. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77. MATHCrossRefMathSciNetGoogle Scholar
  65. Monod, J., Wyman, J., Changeux, J., 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12, 88–118. CrossRefGoogle Scholar
  66. Morton-Firth, C., Bray, D., 1998. Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128. CrossRefGoogle Scholar
  67. Morton-Firth, C., Shimizu, T., Bray, D., 1999. A free-energy based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286, 1059–1074. CrossRefGoogle Scholar
  68. Murray, J., 1993. Mathematical Biology, 2nd edn. Springer, New York. MATHGoogle Scholar
  69. Novère, N.L., Shimizu, T., 2001. Stochsim: Modelling of stochastic biomolecular processes. Bioinformatics 17, 575–576. CrossRefGoogle Scholar
  70. Pfeffer, W., 1888. Uber chemotaktische bewegungen von bacterien, flagellaten and volvocineen. Unters. Bot. Inst. Tübingen 2, 582. Google Scholar
  71. Rao, C., Frenklach, M., Arkin, A., 2004a. An allosteric model for transmembrane signalling in bacterial chemotaxis. J. Mol. Biol. 343, 291–303. CrossRefGoogle Scholar
  72. Rao, C., Kirby, J., Arkin, A., 2004b. Design and diversity in bacterial chemotaxis: A comparative study in Eschericia coli and Bacillus subtilis. PLoS Biol. 2(2), 239–252. CrossRefGoogle Scholar
  73. Segall, J., Block, S., Berg, H., 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. 83(23), 8987–8991. CrossRefGoogle Scholar
  74. Segel, L., 1976. Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57, 23–42. CrossRefMathSciNetGoogle Scholar
  75. Segel, L., 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32(3), 653–665. MATHCrossRefMathSciNetGoogle Scholar
  76. Segel, L., Goldbeter, A., 1986. A mechanism for exact sensory adaptation based on receptor modification. J. Theor. Biol. 120, 151–179. CrossRefMathSciNetGoogle Scholar
  77. Shi, Y., 2000. Adaptive Ising model and bacterial chemotactic receptor network. Eur. Lett. 50(1), 113–119. CrossRefGoogle Scholar
  78. Shi, Y., 2001. Effects of thermal fluctuation and the receptor–receptor interaction in bacterial chemotactic signalling and adaptation. Phys. Rev. E 64, 1–8. CrossRefGoogle Scholar
  79. Shi, Y., 2002. Clustering and signalling of cell receptors. Physica A 311, 199–212. CrossRefGoogle Scholar
  80. Shi, Y., Duke, T., 1998. Cooperative model of bacteria sensing. Phys. Rev. E 58(5), 6399–6406. CrossRefGoogle Scholar
  81. Shimizu, T., Aksenov, S., Bray, D., 2003. A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J. Mol. Biol. 329, 291–309. CrossRefGoogle Scholar
  82. Shimizu, T., Novère, N.L., Levin, M., Beavil, A., Sutton, B., Bray, D., 2000. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat. Cell Biol. 2, 792–796. CrossRefGoogle Scholar
  83. Skoge, M., Endres, R., Wingreen, N., 2006. Receptor-receptor coupling in bacterial chemotaxis: Evidence for strongly coupled receptors. Biophys. J. 90, 4317–4326. CrossRefGoogle Scholar
  84. Sourjik, V., Berg, H., 2002a. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. 99, 12669–12674. CrossRefGoogle Scholar
  85. Sourjik, V., Berg, H., 2002b. Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. 99(1), 123–127. CrossRefGoogle Scholar
  86. Sourjik, V., Berg, H., 2004. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441. CrossRefGoogle Scholar
  87. Spiro, P., 1997. Mathematical studies of cell signal transduction. Ph.D. thesis, The University of Utah. Google Scholar
  88. Spiro, P., Parkinson, J., Othmer, H., 1997. A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. 94, 7263–7268. CrossRefGoogle Scholar
  89. Spudich, J., Koshland, D., 1976. Non-genetic individuality: Changed in the single cell. Nature 262, 467–471. CrossRefGoogle Scholar
  90. Stock, J., Kersulis, G., Koshland, D., 1985. Neither methylating of demethylating enzymes are required for chemotaxis. Cell 42, 683–690. CrossRefGoogle Scholar
  91. Strong, S., Freedman, B., Bialek, W., Koberle, R., 1998. Adaptation and optimal chemotactic strategy for E. coli. Phys. Rev. E 57(4), 4604–4617. CrossRefGoogle Scholar
  92. Toda, M., Kubo, R., Saito, N., 1983. Statistical Physics I. Springer, Berlin. Google Scholar
  93. Wadhams, G., Armitage, J., 2004. Making sense of it all: Bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5(12), 1024–1037. CrossRefGoogle Scholar
  94. Wang, H., Matsumura, P., 1997. Phosphorylating and dephosphorylting protein complexes in bacterial chemotaxis. J. Bacteriol. 179, 287–289. Google Scholar
  95. Windisch, B., Bray, D., Duke, T., 2006. Balls and chains—a mesoscopic approach. Biophys. J. 91, 2383–2392. CrossRefGoogle Scholar
  96. Yi, T., Huang, Y., Simon, M., Doyle, J., 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. 97(9), 4649–4653. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  • M. J. Tindall
    • 1
  • S. L. Porter
    • 2
  • P. K. Maini
    • 1
    • 3
  • G. Gaglia
    • 1
  • J. P. Armitage
    • 2
    • 3
  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordUK
  2. 2.Department of Biochemistry, Microbiology UnitUniversity of OxfordOxfordUK
  3. 3.Oxford Centre for Integrative Systems Biology, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations