Advertisement

Bulletin of Mathematical Biology

, Volume 70, Issue 4, pp 1235–1249 | Cite as

Spectral and Fractal Analysis of Cerebellar Activity After Single and Repeated Brain Injury

  • Sladjana Spasic
  • Milka Culic
  • Gordana Grbic
  • Ljiljana Martac
  • Slobodan Sekulic
  • Dragosav Mutavdzic
Original Article

Abstract

The cerebellum, even when not directly damaged, is potentially interesting for understanding the adaptive responses to brain injury. Cerebellar electrocortical activity (ECoG) in rats was studied using spectral and fractal analysis after single and repeated unilateral injury of the parietal cortex. Local field potentials of cerebellar paravermal cortex were recorded before brain injury, in the acute phase (up to 2.5 hours) after a first injury of anesthetized rats, and then before and after second, third, and, in some cases, fourth injury. Relative gamma power (32.1–128.0 Hz) and fractal dimension of ECoGs were temporarily increased after the first injury. However, there was a permanent mild increase in gamma activity and a mild increase in the fractal dimension of cerebellar activity as a chronic change after repeated remote brain injury. There was a negative linear correlation between the normalized difference in fractal dimensions and normalized difference in gamma powers of cerebellar activity only in the case of repeated brain injury. This is the first study showing that correlation between the parameters of spectral and fractal analyses of cerebellar activity can discriminate between single and repeated brain injuries, and is, therefore, a promising approach for identifying specific pathophysiological states.

Keywords

Gamma power Fractal dimension Cerebellar activity Repeated brain injury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F., 1997. Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybernetics 77, 339–350. zbMATHCrossRefGoogle Scholar
  2. Borgers, C., Epstein, S., Kopell, N.J., 2005. Background gamma rhythmicity and attention in cortical local circuit: A computational study. PNAS 102, 7002–7007. CrossRefGoogle Scholar
  3. Bracic, M., Stefanoska, A., 1998. Nonlinear dynamics of the blood flow studied by Lyapunov exponents. Bull. Math. Biol. 60, 417–433. zbMATHCrossRefGoogle Scholar
  4. Carmichael, S.T., Chesselet, M.F., 2002. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adults. J. Neurosci. 22, 6062–6070. Google Scholar
  5. Chae, J.H., Jeong, J., Peterson, B.S., Kim, J., Bahk, W.M., Jun, T.Y., Kim, S.Y., Kim, K.S., 2004. Dimensional complexity of the EEG in patients with posttraumatic stress disorder. Psychiatry Res. Neuroimaging 131, 79–89. CrossRefGoogle Scholar
  6. Chakravarty, A., 2002. Crossed cerebral-cerebellar diaschisis: MRI evaluation. Neurol. India 50, 322–325. Google Scholar
  7. Choi, K.G., Cho, E.K., Chae, S.H., Kim, E.S., Kim, J.S., 1999. Spectral and bispectral EEG analysis in acute unilateral ischemic stroke patients. Neurol. Psychiatry Brain Res. 7, 9–14. Google Scholar
  8. Courtemanche, R., Lamarre, Y., 2005. Local field potential oscillations in primate cerebellar cortex: Synchronization with cerebral cortex during active and passive expectancy. J. Neurophysiol. 93, 2039–2052. CrossRefGoogle Scholar
  9. Culic, M., Grbic, G., Martac, Lj., Todorovic, V., Drndarevic, N., Spasic, S., Sekulic, S., 2005a. Neocortical plasticity after repeated brain injury in rats. In: Gantchev, N. (Ed.), From Basic Motor Control to Functional Recovery IV, pp. 315–321. Marin Drinov Academic Publishing House, Sofia. Google Scholar
  10. Culic, M., Martac Blanusa, L., Grbic, G., Spasic, S., Jankovic, B., Kalauzi, A., 2005b. Spectral analysis of cerebellar activity after acute brain injury in anesthetized rats. Acta Neurobiol. Exp. 65, 11–17. Google Scholar
  11. Culic, M., Grbic, G., Martac, Lj., Kesic, S., Todorovic, V., Spasic, S., Sekulic, S., 2006. Cerebellar responses to traumatic brain injury in rats. In: Ruzdijic, S., Rakic, Lj. (Eds.), Neurobiological Studies—From Genes to Behaviour, pp. 167–181. Research Signpost, Trivandrum. Google Scholar
  12. DeFord, M.S., Wilson, M.S., Rice, A.C., Clausen, T., Rice, L.K., Barabnova, A., Bullock, R., Hamm, R.J., 2002. Repeated mild brain injuries result in cognitive impairment in B6C3F1 mice. J. Neurotrauma 19, 427–438. CrossRefGoogle Scholar
  13. Diambra, L., Malta, C.P., Capurro, A., Fernandez, J., 2001. Nonlinear structures in electroencephalogram signals. Physica A 300, 505–520. zbMATHCrossRefGoogle Scholar
  14. Eke, A., Herman, P., Kocsis, L., Kozak, L.R., 2002. Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23, R1–R38. CrossRefGoogle Scholar
  15. Engel, A.K., Singer, W., 2001. Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25. CrossRefGoogle Scholar
  16. Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B., 1999. A comparison of fractal dimension algorithms using synthetic and experimental data. In: Proc. IEEE International Symposium on Circuits and System, Adaptive Digital Signal Processing, Orlando, Fl, III, pp. 199–202. Google Scholar
  17. Eurich, C., 2003. Neural dynamics and neural coding. Ph. Thesis, University of Bremen, pp. 1–195. Google Scholar
  18. Gaetz, M., 2004. The neurophysiology of brain injury. Cl. Neurophysiol. 115, 4–18. CrossRefGoogle Scholar
  19. Gianetti, S., Molinari, M., 2002. Cerebellar input to the posterior parietal cortex in the rat. Brain Res. Bull. 58, 481–489. CrossRefGoogle Scholar
  20. Goodman, J.C., Cherian, L., Bryan, R.M., Jr., Robertson, C.S., 1994. Lateral cortical impact injury in rats: pathologic effects of varying cortical compression and impact velocity. J. Neurotrauma 11, 587–597. CrossRefGoogle Scholar
  21. Gray, C.M., 1999. The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24, 31–47. CrossRefGoogle Scholar
  22. Guha, A., 2004. Head injury research: What have we learned? Ind. J. Crit. Care. Med. 8, 111–115. MathSciNetGoogle Scholar
  23. Hernandez Caceres, L.J., Sibat, F.S., Hong, R., Garcia, L., Sautie, M., Namugova, V., 2004. Towards the estimation of fractal dimension of heart rate variability data. El. J. Biomed. 2, 4–15. Google Scholar
  24. Higuchi, T., 1988. Approach to an irregular time series on the basis of the fractal theory. Physics D 31, 277–283. zbMATHCrossRefMathSciNetGoogle Scholar
  25. Juhasz, C., Kamondi, A., Szirmai, I., 1997. Spectral EEG analysis following hemispheric stroke. Acta Neurol. Scand. 96, 397–400. CrossRefGoogle Scholar
  26. Jurkowlaniec, E., Tokarski, J., Trojniar, W., 2003. Effects of unilateral ibotenate lesions of the ventral tegmental area on cortical and hippocampal EEG in freely behaving rats. Acta Neurobiol. Exp. 62, 369–375. Google Scholar
  27. Kalauzi, A., Spasic, S., Culic, M., Grbic, G., Martac, Lj., 2004. Correlation between fractal dimension and power spectra after unilateral cerebral injury in rat. FENS Abstr. 2, A.199.9. Google Scholar
  28. Kalauzi, A., Spasic, S., Culic, M., Grbic, G., Martac, Lj., 2005. Consecutive differences as a method of signal fractal analysis. Fractals 13, 283–292. CrossRefGoogle Scholar
  29. Klonowski, W., 2002. Chaotic dynamics applied to signal complexity in phase space and in time domain. Chaos Solitons Fractals 14, 1379–1387. zbMATHCrossRefGoogle Scholar
  30. Klonowski, W., Olejaczyk, E., Stepien, R., Scelenberger, W., 2003. New methods of nonlinear and symbolic dynamics in sleep EEG-signal analysis. In: Feng, D.D., Carson, E.R. (Eds.), Modelling and Control in Biomedical Systems, Proc. 5th IFAC Symposium, pp. 241–244. Elsevier, Amsterdam. Google Scholar
  31. Klonowski, W., Olejaczyk, E., Stepien, R., Jalowiecki, P., Rudner, R., 2006. Monitoring the depth of anaesthesia using fractal complexity method. In: Novak, M.M. (Ed.), Complexus Mundi, Emergent Patterns in Nature, pp. 333–342. World Scientific, Singapore. CrossRefGoogle Scholar
  32. Le Van Quyen, M., 2003. Disentangling the dynamic core: a research program for a neurodynamics at he large-scale. Biol. Res. 36, 67–88. Google Scholar
  33. Micheloyannis, S., Flitzanis, N., Papanikolaou, E., Bourkas, M., Terzakis, D., Arvanitis, S., Stam, C.J., 1998. Usefulness of non-linear EEG analysis. Acta Neurol. Scand. 97, 13–19. CrossRefGoogle Scholar
  34. Nitish, V., Thakor, N.T., Tong, S., 2004. Advances in quantitative electroencephalogram analysis methods. Annu. Rev. Biomed. Eng. 6, 453–495. CrossRefGoogle Scholar
  35. Orzel-Gryglewska, J., Jurkowlaniec, E., Trojnier, W., 2006. Microinjection of procaine and electrolytic lesion in the ventral tegmental area suppresses hippocampal theta rhythm in urethane-anesthetized rats. Brain Res. Bull. 68, 295–309. CrossRefGoogle Scholar
  36. Parsons, L.C., Crosby, L.J., Perlis, M., Britt, T., Jones, P., 1997. Longitudal sleep EEG power spectral analysis studies in adolescent minor head injury. J. Neurotrauma 14, 549–559. CrossRefGoogle Scholar
  37. Pradhan, N., Narayana Dutt, D., Sadasivan, P.K., Satish, M., 1995. Analysis of the chaotic characteristics of sleep EEG patterns from dominant Lyapunov exponent. In: Engineering in Medicine and Biology Society, 14th Conference of the Biomedical Engineering Society of India, 3/79–3/80. Google Scholar
  38. Saini, S., DeStefano, N., Smith, S., Guidi, L., Amato, M.P., Federico, A., Matthews, P.M., 2004. Altered cerebellar functional connectivity mediates potential adaptive plasticity in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 75, 840–846. CrossRefGoogle Scholar
  39. Savi, M.A., 2005. Chaos and order in biomedical rhythms. J. Braz. Soc. Mech. Sci. Eng. 27, 157–169. Google Scholar
  40. Sinai, A., Bowers, C.W., Crainiceanu, C.M., Boatman, D., Gordon, B., Lesser, R.P., Lenz, F.A., Crone, N.E., 2005. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain 128, 1556–1570. CrossRefGoogle Scholar
  41. Slemmer, J.E., Matser, E.J.T., De Zeeuw, C.I., Weber, J.T., 2002. Repeated mild injury causes cumulative damage to hippocampal cells. Brain 125, 2699–2709. CrossRefGoogle Scholar
  42. Small, S.L., Small, S.L., Hlustik, P., Noll, D.C., Genovese, C., Solodkin, A., 2002. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 125, 1544–1557. CrossRefGoogle Scholar
  43. Sotropoulos, D.S., Baker, S.N., 2006. Cortico-cerebellar coherence during a precision grip task in the monkey. J. Neurophysiol. 96, 1194–1206. Google Scholar
  44. Spasic, S., 2007. Spectral and fractal analysis of biosignals and coloured noise. In: Proceedings of the 5th International Symposium on Intelligent Systems and Informatics, pp. 147–150. August 24–25, 2007, Subotica. Google Scholar
  45. Spasic, S., Kalauzi, A., Culic, M., Grbic, G., Martac, Lj., 2005a. Fractal analysis of rat brain activity after injury. Med. Biol. Eng. Comput. 43, 345–348. CrossRefGoogle Scholar
  46. Spasic, S., Kalauzi, A., Culic, M., Grbic, G., Martac, Lj., 2005b. Estimation of parameter kmax in fractal analysis of rat brain activity. Ann. N.Y. Acad. Sci. 1048, 427–429. CrossRefGoogle Scholar
  47. Tong, T., Bezerianos, A., Paul, J., Zhu, Y., Thakor, N., 2002. Nonextensive entropy measure of EEG following brain injury from cardiac arrest. Physica A: Stat. Mech. Appl. 305, 619–628. zbMATHCrossRefGoogle Scholar
  48. Tononi, G., Edelman, G.M., Sporns, O., 1998. Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 2, 474–484. CrossRefGoogle Scholar
  49. Watkins, N.W., Freeman, M.F., Rhodes, C.S., Rowlands, G., 2001. Ambiguities in determination of self-affinity in the AE-index time series. Fractals 9, 471–479. CrossRefGoogle Scholar
  50. Williams, A.J., Lu, X.M., Slusher, B., Tortella, F.C., 2001. Electroencephalogram analysis and neuroprotective profile of the n-acetylated-α-linked acidic dipeptidase inhibitor, GPI5232, in normal and brain-injured rats. J. Pharmacol. Exp. Ther. 299, 48–57. Google Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  • Sladjana Spasic
    • 1
  • Milka Culic
    • 2
  • Gordana Grbic
    • 2
  • Ljiljana Martac
    • 2
  • Slobodan Sekulic
    • 3
  • Dragosav Mutavdzic
    • 1
  1. 1.Institute for Multidisciplinary ResearchBelgradeSerbia
  2. 2.Department of Neurobiology and Immunology, Institute for Biological ResearchUniversity of BelgradeBelgradeSerbia
  3. 3.Medical FacultyUniversity of Novi SadNovi SadSerbia

Personalised recommendations