A Stochastic Spatial Dynamical Model for Aedes Aegypti

  • Marcelo Otero
  • Nicolás Schweigmann
  • Hernán G. Solari
Original Article


We develop a stochastic spatial model for Aedes aegypti populations based on the life cycle of the mosquito and its dispersal. Our validation corresponds to a monitoring study performed in Buenos Aires. Lacking information with regard to the number of breeding sites per block, the corresponding parameter (BS) was adjusted to the data. The model is able to produce numerical data in very good agreement with field results during most of the year, the exception being the fall season. Possible causes of the disagreement are discussed. We analyzed the mosquito dispersal as an advantageous strategy of persistence in the city and simulated the dispersal of females from a source to the surroundings along a 3-year period observing that several processes occur simultaneously: local extinctions, recolonization processes (resulting from flight and the oviposition performed by flyers), and colonization processes resulting from the persistence of eggs during the winter season. In view of this process, we suggest that eradication campaigns in temperate climates should be performed during the winter time for higher efficiency.


Mathematical ecology Population dynamics Aedes aegypti Stochastic model Dengue epidemics Temperate climate Spatial model Aedes aegypti dispersal 


  1. Andersson, H., Britton, T., 2000. Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics, vol. 151. Springer, Berlin. zbMATHGoogle Scholar
  2. Arrivillaga, J., Barrera, R., 2004. Food as a limiting factor for aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–0. Google Scholar
  3. Bar-Zeev, M., 1957. The effect of density on the larvae of a mosquito and its influence on fecundity. Bull. Res. Council Israel B 6, 220–28. Google Scholar
  4. Bar-Zeev, M., 1958. The effect of temperature on the growth rate and survival of the immature stages of aedes aegypti. Bull. Entomol. Res. 49, 157–63. CrossRefGoogle Scholar
  5. Boyce, R., 1911. Yellow Fever and Its Prevention. E.P. Dutton and Co., New York. Google Scholar
  6. Bugher, J.C., Taylor, M., 1949. Radiophosphorus and radiostrontium in mosquitoes. Preliminary report. Science 110, 146–47. CrossRefGoogle Scholar
  7. Calder, L., Laird, M., 1994. Mosquito travellers, arbovirus vectors and the used tyre trade. Travel. Med. Int. 12, 3–2. Google Scholar
  8. Carbajo, A.E., Schweigmann, N., Curto, S.I., de Garín, A., Bejarán, R., 2001. Dengue transmission risk maps of Argentina. Trop. Med. Int. Health 6(3), 170–83. CrossRefGoogle Scholar
  9. Carbajo, A.E., Gomez, S.M., Curto, S.I., Schweigmann, N., 2004. Variación espacio temporal del riesgo de transmisión de dengue en la ciudad de Buenos Aires. Medicina 64, 231–34. Google Scholar
  10. Carbajo, A.E., Curto, S.I., Schweigmann, N., 2006. Spatial distribution pattern of oviposition in the mosquito aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector. Med. Vet. Entomol. 20, 209–18. CrossRefGoogle Scholar
  11. Chadee, D.D., 1997. Effects of forced egg-retention on the oviposition patterns of female aedes aegypti (diptera:culicidae). Bull. Entomol. Res. 87, 649–51. CrossRefGoogle Scholar
  12. Christophers, R., 1960. Aedes aegypti (L.), the Yellow Fever Mosquito. Cambridge Univ. Press, Cambridge. Google Scholar
  13. de Garín, A.B., Bejarán, R.A., Carbajo, A.E., de Casas, S.C., Schweigmann, N.J., 2000. Atmospheric control of aedes aegypti populations in Buenos Aires (Argentina) and its variability. Int. J. Biometerol. 44, 148–56. CrossRefGoogle Scholar
  14. Dunn, L.H., 1927. Observations on the oviposition of aedes aegypti linn., in relation to distance from habitations. Bull. Ent. Res. 18, 145–48. CrossRefGoogle Scholar
  15. Durrett, R., 1999. Stochastic spatial models. SIAM Rev. 41(4), 677–18. zbMATHCrossRefMathSciNetGoogle Scholar
  16. Dye, C., 1982. Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference. Ecol. Entomol. 7, 39–6. CrossRefGoogle Scholar
  17. Edman, J.D., Scott, T.W., Costero, A., Morrison, A.C., Harrington, L.C., Clark, G.G., 1998. Aedes aegypti (diptera culicidae) movement influenced by availability of oviposition sites. J. Med. Entomol. 35(4), 578–83. Google Scholar
  18. Ethier, S.N., Kurtz, T.G., 1986. Markov Processes. Wiley, New York. zbMATHCrossRefGoogle Scholar
  19. Fay, R.W., 1964. The biology and bionomics of aedes aegypti in the laboratory. Mosq. News. 24, 300–08. Google Scholar
  20. Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., 1993. Dynamics life table model for aedes aegypti: Analysis of the literature and model development. J. Med. Entomol. 30, 1003–018. Google Scholar
  21. FUNCEI, 1998. Dengue enfermedad emergente. Fund. Estud. Infectol. 1(1), 1–6, Google Scholar
  22. FUNCEI, 1999a. Dengue enfermedad emergente. Fund. Estud. Infectol. 2(1), 1–12, Google Scholar
  23. FUNCEI, 1999b. Dengue enfermedad emergente. Fund. Estud. Infectol. 2(2), 1–8, Google Scholar
  24. Getis, A., Morrison, A.C., Gray, K., Scott, T.W., 2003. Characteristics of the spatial pattern of the dengue vector, aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 69(5), 494–05. Google Scholar
  25. Gleiser, R.M., Urrutia, J., Gorla, D.E., 2000. Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions. Entomol. Exp. Appl. 95, 135–40. CrossRefGoogle Scholar
  26. Harrington, L.C., Scott, T.W., Lerdthusnee, K., Coleman, R.C., Costero, A., Clark, G.G., Jones, J.J., Kitthawee, S., Kittayapong, P., Sithiprasasna, R., Edman, J.D., 2005. Dispersal of the dengue vector aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72(2), 209–20. Google Scholar
  27. Honório, N.A., da Costa Silva, W., Leite, P.J., Gonçalvez, J.M., Lounibos, L.P., de Oliveira, R.L., 2003. Dispersal of aedes aegipty and aedes albopictus (dipetera culicidae) in an urban endemic dengue area in the state of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–98. CrossRefGoogle Scholar
  28. Horsfall, W.R., 1955. Mosquitoes: Their Bionomics and Relation to Disease. Ronald, New York. Google Scholar
  29. Király, A., Jánosi, I.M., 2002. Stochastic modelling of daily temperature fluctuations. Phys. Rev. E 65, 051102. CrossRefGoogle Scholar
  30. Kurtz, T.G., 1970. Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7, 49–8. zbMATHCrossRefMathSciNetGoogle Scholar
  31. Kurtz, T.G., 1971. Limit theorems for sequences of jump processes approximating ordinary differential equations. J. Appl. Probab. 8, 344–56. zbMATHCrossRefMathSciNetGoogle Scholar
  32. Laird, M., 1989. Vector-borne diseases introduced into new areas due to human movement: a historical perspective. In: Service, M.W. (Ed.), Demography and Vector-Borne Diseases, pp. 17–3. CRC, Boca Raton Google Scholar
  33. Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., 1984. The complex hatching response of aedes eggs to larval density. Ecol. Entomol. 9, 437–42. CrossRefGoogle Scholar
  34. McDonald, P.T., 1977. Population characteristics of domestic aedes aegypti (diptera: Culicidae) in villages on the Kenya coast. ii. dispersal within and between villages. J. Med. Entomol. 14(1), 49–3. Google Scholar
  35. Ministerio de Asistencia Social y Salud Publica, A., 1964. Campaña de erradicacion del Aedes aegypti en la República Argentina. Informe final. Buenos Aires. Google Scholar
  36. Morlan, H.B., Hayes, R.O., 1958. Urban dispersal and activity of aedes aegypti. Mosq. News 18, 137–44. Google Scholar
  37. Muir, L.E., Kay, B.H., 1998. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am. J. Trop. Med. Hyg. 58, 277–82. Google Scholar
  38. Nayar, J.K., Sauerman, D.M., 1975. The effects of nutrition on survival and fecundity in Florida mosquitoes. Part 3. utilization of blood and sugar for fecundity. J. Med. Entomol. 12, 220–25. Google Scholar
  39. Ordoñez-Gonzalez, J.G., Mercado-Hernandez, R., Flores-Suarez, A.E., Fernandez-Salas, I., 2001. The use of sticky ovitraps to estimate dispersal of aedes aegypti in northeastern Mexico. J. Am. Mosq. Control Assoc., Inc. 17(2), 93–7. Google Scholar
  40. Otero, M., Solari, H., Schweigmann, N., 2006. A stochastic population dynamic model for aedes aegypti: formulation and application to a city with temperate climate. Bull. Math. Biol. 68, 1945–974. CrossRefMathSciNetGoogle Scholar
  41. Reiter, P., Amador, M.A., Anderson, R.A., Clark, G.G., 1995. Short report: dispersal of aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 52, 177–79. Google Scholar
  42. Rodhain, F., Rosen, L., 1997. Mosquito vectors and dengue virus-vector relationships. In: Gubler, D.J., Kuno, G. (Eds.), Dengue and Dengue Hemorragic Fever, pp. 61–8. CAB International, New York. Google Scholar
  43. Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., 1990. Temperature-dependent development and survival rates of culex quinquefasciatus and aedes aegypti (diptera: Culicidae). J. Med. Entomol. 27, 892–98. Google Scholar
  44. Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719–31. CrossRefGoogle Scholar
  45. Schweigmann, N., Boffi, R., 1998. Aedes aegypti y aedes albopictus: Situación entomológica en la región. In: Temas de Zoonosis y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis y Primer Cong. Argent. y Lationoamer. de Enf. Emerg. y Asociación Argentina de Zoonosis, pp. 259–63, Buenos Aires. Google Scholar
  46. Schweigmann, N., Orellano, P., Kuruc, J., Vera, M.T., Vezzani, D., Méndez, A., 2002. Distribución y abundancia de aedes aegypti (diptera: Culicidae) en la ciudad de Buenos Aires. In: Salomón, D.S. (Ed.), Actualizaciones en Artropodología Sanitaria Argentina, pp. 155–60. Google Scholar
  47. Service, M.W., 1997. Mosquito (diptera: Culicidae) dispersal-the long and short of it. J. Med. Entomol. 34, 579–88. Google Scholar
  48. Shannon, R.C., Burke, A.W., Davis, N.C., 1930. Observations on released stegomyia aegypti (l.) with special reference to dispersion. Am. J. Trop. Med. 10, 145–50. Google Scholar
  49. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–70. CrossRefGoogle Scholar
  50. Solari, H.G., Natiello, M.A., 2003. Stochastic population dynamics: the Poisson approximation. Phys. Rev. E 67, 031918. CrossRefGoogle Scholar
  51. Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., 1972. Studies on the life budget of aedes aegypti in Wat Samphaya Bangkok Thailand. Bull. W.H.O. 46, 211–26. Google Scholar
  52. Subra, R., Mouchet, J., 1984. The regulation of preimaginal populations of aedes aegypti (l.) (diptera: Culicidae) on the Kenya coast. ii. food as a main regulatory factor. Ann. Trop. Med. Parasitol. 78, 63–0. Google Scholar
  53. Takahashi, L.T., Maidana, N.A., Ferreira, W.C. Jr., Pulino, P., Yang, H.M., 2005. Mathematical models for the aedes aegypti dispersal dynamics: Travelling waves by wing and wind. Bull. Math. Biol. 67, 509–28. CrossRefMathSciNetGoogle Scholar
  54. Trpis, M., 1972. Dry season survival of aedes aegypti eggs in various breeding sites in the Dar es Salaam area, Tanzania. Bull. W.H.O. 47, 433–37. Google Scholar
  55. Trpis, M., Häusermann, W., 1986. Dispersal and other population parameters of aedes aegypti in an African village and their possible significance in epidemiology of vector-borne-diseases. Am. J. Trop. Med. Hyg. 35, 1263–279. Google Scholar
  56. Tsuda, Y., Takagi, M., Wang, S., Wang, Z., Tang, L., 2001. Movement of aedes aegypti (diptera: Culicidae) released in a small isolated village on Hainan island, China. J. Med. Entomol. 38(1), 93–8. CrossRefGoogle Scholar
  57. US Department of Commerce, 2006. National climatic data center,
  58. Vezzani, C., Velázquez, S.T., Schweigmann, N., 2004. Seasonal pattern of abundance of aedes aegypti (diptera: Culicidae) in Buenos Aires city, Argentina. Mem. Inst. Oswaldo Cruz 99, 351–56. CrossRefGoogle Scholar
  59. WHO, 1998. Dengue hemorrhagic fever. Diagnosis, treatment, prevention and control. World Health Organization, Ginebra, Suiza. Google Scholar
  60. WHO, 2002. Dengue and Dengue hemorrhagic fever. World Health Organization, Ginebra, Suiza. Google Scholar
  61. Wiseman, R.H., Symes, L.B., McMahon, J.C., Teesdale, C., 1939. Report on a malaria survey of Mombasa. Nairobi Government Printer, Nairobi. Google Scholar
  62. Wolfinsohn, M., Galun, R., 1953. A method for determining the flight range of aedes aegypti (linn.). Bull. Res. Council Israel 2, 433–36. Google Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  • Marcelo Otero
    • 1
  • Nicolás Schweigmann
    • 2
  • Hernán G. Solari
    • 1
  1. 1.Department of Physics, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Department of Genetics and Ecology, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations