Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model

  • Nakul ChitnisEmail author
  • James M. Hyman
  • Jim M. Cushing
Original Article


We perform sensitivity analyses on a mathematical model of malaria transmission to determine the relative importance of model parameters to disease transmission and prevalence. We compile two sets of baseline parameter values: one for areas of high transmission and one for low transmission. We compute sensitivity indices of the reproductive number (which measures initial disease transmission) and the endemic equilibrium point (which measures disease prevalence) to the parameters at the baseline values. We find that in areas of low transmission, the reproductive number and the equilibrium proportion of infectious humans are most sensitive to the mosquito biting rate. In areas of high transmission, the reproductive number is again most sensitive to the mosquito biting rate, but the equilibrium proportion of infectious humans is most sensitive to the human recovery rate. This suggests strategies that target the mosquito biting rate (such as the use of insecticide-treated bed nets and indoor residual spraying) and those that target the human recovery rate (such as the prompt diagnosis and treatment of infectious individuals) can be successful in controlling malaria.


Malaria Epidemic model Sensitivity analysis Reproductive number Endemic equilibria 


  1. Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans: Dynamics and Control . Oxford University Press, London. Google Scholar
  2. Aron, J.L., 1988. Mathematical modeling of immunity to malaria. Math. Biosci. 90, 385–96. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Arudo, J., Gimnig, J.E., ter Kuile, F.O., Kachur, S.P., Slutsker, L., Kolczak, M.S., Hawley, W.A., Orago, A.S.S., Nahlen, B.L., Phillips-Howard, P.A., 2003. Comparison of government statistics and demographic surveillance to monitor mortality in children less than five years old in rural western Kenya. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 30–7. Google Scholar
  4. Baker, J.R., 1966. Parasitic Protozoa. Hutchinson. Google Scholar
  5. Bloland, P.B., Williams, H.A., Roundtable on the Demography of Forced Migration, and Joseph L. Mailman School of Public Health. Program on Forced Migration and Health 2002 Malaria Control During Mass Population Movements and Natural Disasters. National Academies Press. Google Scholar
  6. Boyd, M.F., 1949. Epidemiology: Factors related to the definitive host. In: Boyd, M.F. (Ed.), Malariology, vol. 1, pp. 608–97. Saunders, Philadelphia. Google Scholar
  7. Briët, O.J.T., 2002. A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med. Vet. Entomol. 16, 22–7. CrossRefGoogle Scholar
  8. Central Intelligence Agency, CIA—The World Factbook, 2007.
  9. Chitnis, N., 2005. Using mathematical models in controlling the spread of malaria. Ph.D. thesis, University of Arizona, Tucson, Arizona, USA. Google Scholar
  10. Chitnis, N., Cushing, J.M., Hyman, J.M., 2006. Bifurcation analysis of a mathematical model for malaria transmission. SIAM J. Appl. Math. 67, 24–5. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Davidson, G., Draper, C.C., 1953. Field study of some of the basic factors concerned in the transmission of malaria. Trans. Roy. Soc. Trop. Med. Hyg. 47, 522–35. CrossRefGoogle Scholar
  12. Deloron, P., Chougnet, C., 1992. Is immunity to malaria really short-lived? Parasitol. Today 8, 375–78. CrossRefGoogle Scholar
  13. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J., 1990. On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–82. zbMATHCrossRefMathSciNetGoogle Scholar
  14. Dietz, K., Molineaux, L., Thomas, A., 1974. A malaria model tested in the African Savannah. Bull. World Health Organ. 50, 347–57. Google Scholar
  15. Draper, C.C., 1953. Observations on the infectiousness of gametocytes in hyperendemic malaria. Trans. Roy. Soc. Trop. Med. Hyg. 47, 160–65. CrossRefGoogle Scholar
  16. Garrett-Jones, C., Grab, B., 1964. The assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the population of parous females. Bull. World Health Organ. 31, 71–6. Google Scholar
  17. Garrett-Jones, C., Shidrawi, G.R., 1969. Malaria vectorial capacity of a population of Anopheles gambiae. Bull. World Health Organ. 40, 531–45. Google Scholar
  18. Gillies, M.T., Wilkes, T.J., 1963. Observations on nulliparous and parous rates in a population of A. funestus in East Africa. Ann. Trop. Med. Parasitol. 57, 204–13. Google Scholar
  19. Gillies, M.T., Wilkes, T.J., 1965. A study of the age composition of populations of Anopheles gambiae Giles and A. funestus Giles in north-eastern Tanzania. Bull. Entomol. Res. 56, 237–62. CrossRefGoogle Scholar
  20. Gimnig, J.E., Kolczak, M.S., Hightower, A.W., Vulule, J.M., Schoute, E., Kamau, L., Phillips-Howard, P.A., ter Kuile, F.O., Nahlen, B.L., Hawley, W.A., 2003a. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in western Kenya. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 115–20. Google Scholar
  21. Gimnig, J.E., et al., 2003b. Impact of permethrin-treated bed nets on entomologic indices in an area of intense year-round malaria transmission. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 16–2. Google Scholar
  22. Hawley, W.A., et al., 2003. Implications of the western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 168–73. Google Scholar
  23. Khan, A.Q., Talibi, S.A., 1972. Epidemiological assessment of malaria transmission in an endemic area of East Pakistan and the significance of congenital immunity. Bull. World Health Organ. 46, 783–92. Google Scholar
  24. Krafsur, E.S., Armstrong, J.C., 1978. An integrated view of entomological and parasitological observations on falciparum malaria in Gambela, Western Ethiopian Lowlands. Trans. Roy. Soc. Trop. Med. Hyg. 72, 348–56. CrossRefGoogle Scholar
  25. Krafsur, E.S., Garrett-Jones, C., 1977. The survival of Wuchereria infected Anopheles funestus Giles in north-eastern Tanzania. Trans. Roy. Soc. Trop. Med. Hyg. 71, 155–60. CrossRefGoogle Scholar
  26. Macdonald, G., 1957. The Epidemiology and Control of Malaria. Oxford University Press, London. Google Scholar
  27. Massaga, J.J., Kitua, A.Y., Lemnge, M.M., Akida, J.A., Malle, L.N., Rønn, A.M., Theander, T.G., Bygbjerg, I.C., 2003. Effect of intermittent treatment with amodiaquine on anaemia and malarial fevers in infants in Tanzania: a randomized placebo-controlled trial. Lancet 361, 1853–860. CrossRefGoogle Scholar
  28. Molineaux, L., Gramiccia, G., 1980. The Garki Project. World Health Organization. Google Scholar
  29. Molineaux, L., Shidrawi, G.R., Clarke, J.L., Boulzaguet, J.R., Ashkar, T.S., 1979. Assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the man-biting rate and age-composition. Bull. World Health Organ. 57, 265–74. Google Scholar
  30. Muirhead-Thomson, R.C., 1957. The malarial infectivity of an African village population to mosquitoes (Anopheles gambiae): A random xenodiagnostic survey. Am. J. Trop. Med. Hyg. 6, 971–79. Google Scholar
  31. Nedelman, J., 1984. Inoculation and recovery rates in the malaria model of Dietz, Molineaux and Thomas. Math. Biosci. 69, 209–33. zbMATHCrossRefMathSciNetGoogle Scholar
  32. Nedelman, J., 1985. Introductory review: Some new thoughts about some old malaria models. Math. Biosci. 73, 159–82. zbMATHCrossRefMathSciNetGoogle Scholar
  33. Ngwa, G.A., Shu, W.S., 2000. A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32, 747–63. zbMATHCrossRefMathSciNetGoogle Scholar
  34. Oaks Jr., S.C., Mitchell, V.S., Pearson, G.W., Carpenter, C.C.J. (eds.) 1991. Malaria: Obstacles and Opportunities. National Academy Press. Google Scholar
  35. Peters, W., Standfast, H.A., 1960. Studies on the epidemiology of malaria in New Guinea. II. Holoendemic malaria, the entomological picture. Trans. Roy. Soc. Trop. Med. Hyg. 54, 249–60. CrossRefGoogle Scholar
  36. Pull, J.H., Grab, B., 1974. A simple epidemiological model for evaluating the malaria inoculation rate and the risk of infection in infants. Bull. World Health Organ. 51, 507–16. Google Scholar
  37. Roll Back Malaria Partnership, 2005. RBM World Malaria Report 2005.
  38. Ross, R., 1911. The Prevention of Malaria, 2 edn. Murray, London. Google Scholar
  39. Schellenberg, D., Menendez, C., Kahigwa, E., Aponte, J., Vidal, J., Tanner, M., Mshinda, H., Alonso, P., 2001. Intermittent treatment for malaria and anaemia control at time of routine vaccinations in Tanzanian infants: a randomized, placebo-controlled trial. Lancet 357, 1471–477. CrossRefGoogle Scholar
  40. Sharma, S.N., Shukla, R.P., Raghavendra, K., Subbarao, S.K., 2005. Impact of DDT spraying on malaria transmission in Bareilly District, Uttar Pradesh, India. J. Vector Borne Dis. 42, 54–0. Google Scholar
  41. Slooff, R., Verdrager, J., 1972. Anopheles balabacensis Baisas 1936 and malaria transmission in south-eastern areas of Asia. WHO/MAL/72.765. Google Scholar
  42. Smalley, M.E., Sinden, R.E., 1977. Plasmodium falciparum gametocytes: Their longevity and infectivity. Parasitology 74, 1–. CrossRefGoogle Scholar
  43. Zahar, A.R., 1974. Review of the ecology of malaria vectors in the WHO Eastern 4Mediterranean region. Bull. World Health Organ. 50, 427–40. Google Scholar
  44. Zhou, G., Minakawa, N., Githeko, A.K., Yan, G., 2004. Association between climate variability and malaria epidemics in the East African highlands. Proc. Nat. Acad. Sci. USA 101, 2375–380. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  • Nakul Chitnis
    • 1
    • 2
    • 3
    Email author
  • James M. Hyman
    • 2
    • 4
  • Jim M. Cushing
    • 3
    • 4
  1. 1.Department of Public Health and EpidemiologySwiss Tropical InstituteBaselSwitzerland
  2. 2.Mathematical Modeling and AnalysisLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Program in Applied MathematicsUniversity of ArizonaTucsonUSA
  4. 4.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations