Bulletin of Mathematical Biology

, Volume 70, Issue 3, pp 820–867

Quantifying the Routes of Transmission for Pandemic Influenza

Original Article


Motivated by the desire to assess nonpharmaceutical interventions for pandemic influenza, we seek in this study to quantify the routes of transmission for this disease. We construct a mathematical model of aerosol (i.e., droplet-nuclei) and contact transmission of influenza within a household containing one infected. An analysis of this model in conjunction with influenza and rhinovirus data suggests that aerosol transmission is far more dominant than contact transmission for influenza. We also consider a separate model of a close expiratory event, and find that a close cough is unlikely (≈1% probability) to generate traditional droplet transmission (i.e., direct deposition on the mucous membranes), although a close, unprotected and horizontally-directed sneeze is potent enough to cause droplet transmission. There are insufficient data on the frequency of close expiratory events to assess the relative importance of aerosol transmission and droplet transmission, and it is prudent to leave open the possibility that droplet transmission is important until proven otherwise. However, the rarity of close, unprotected and horizontally-directed sneezes—coupled with the evidence of significant aerosol and contact transmission for rhinovirus and our comparison of hazard rates for rhinovirus and influenza—leads us to suspect that aerosol transmission is the dominant mode of transmission for influenza.


Aerosol physics Dose-response models Disease transmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alford, R.H., Kasel, J.A., Gerone, P.J., Knight, V., 1966. Human influenza resulting from aerosol inhalation. Proc. Soc. Exp. Biol. Med. 122, 800–804. Google Scholar
  2. Ansari, S.A., Springthorpe, V.S., Sattar, S.A., Rivard, S., Rahman, M., 1991. Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14. J. Clin. Mircobiol. 29, 2115–2119. Google Scholar
  3. Ball, F., Neal, P., 2002. A general model for stochastic SIR epidemics with two levels of mixing. Math. Biosci. 180, 73–102. MATHCrossRefMathSciNetGoogle Scholar
  4. Barry, J.M., 2004. The Great Influenza. Penguin Books, London. Google Scholar
  5. Bean, B., Moore, B.M., Sterner, B., Peterson, L.R., Gerding, D.N., Balfour, H.H. Jr., 1982. Survival of influenza virus on environmental surfaces. J. Infect. Dis. 146, 47–51. Google Scholar
  6. Bridges, C.B., Kuehnert, M.J., Hall, C.B., 2003. Transmission of influenza: implications for control in health care settings. Clin. Infect. Dis. 37, 1094–1101. CrossRefGoogle Scholar
  7. Bynoe, M.L., Hobson, D., Horner, J., Kipps, A., Schild, G.C., Tyrrell, D.A.J., 1961. Inoculation of human volunteers with a strain of virus isolated from a common cold. Lancet 1, 1194–1196. CrossRefGoogle Scholar
  8. Calfee, D.P., Peng, A.W., Hussey, E.K., Lobo, M., Hayden, F.G., 1999. Safety and efficacy of once daily intranasal zanamivir in preventing experimental human influenza A infection. Antivir. Ther. 4, 143–149. Google Scholar
  9. Carrat, F., Sahler, C., Rogez, S., Leruez-Ville, M., Freymuth, F., Le Gales, C., Bungener, M., Houseet, B., Nicolas, M., Rouzioux, C., 2002. Influenza burden of illness. Arch. Intern. Med. 162, 1842–1848. CrossRefGoogle Scholar
  10. Cate, T.R., Couch, R.B., Johnson, K.M., 1964. Studies with rhinoviruses in volunteers: production of illness, effect of naturally acquired antibody, and demonstration of a protective effect not associated with serum antibody. J. Clin. Investig. 43, 56–67. CrossRefGoogle Scholar
  11. Cauchemez, S., Carrat, F., Viboud, C., Valleron, A.J., Boelle, P.Y., 2004. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Stat. Med. 23, 3469–3487. CrossRefGoogle Scholar
  12. Committee on the Development of Reusable Facemasks for Use During an Influenza Pandemic, Institute of Medicine, 2006. Reusability of Facemasks During an Influenza Pandemic. National Academies Press, Washington. Google Scholar
  13. Connor, R.J., Kawaoka, Y., Webster, R.G., Paulson, J.C., 1994. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 203, 17–23. CrossRefGoogle Scholar
  14. Couch, R.B., Gerone, P.J., Cate, T.R., Griffith, W.R., Alling, D.W., Knight, V., 1965. Preparation and properties of a small-particle aerosol of coxsackie A21. Proc. Soc. Exp. Biol. Med. 118, 818. Google Scholar
  15. Couch, R.B., Cate, T.R., Douglas, R.G. Jr., Gerone, P.J., Knight, V., 1966. Effect of route of inoculation on experimental respiratory viral disease in volunteers and evidence for airborne transmission. Bacteriol. Rev. 30, 517–529. Google Scholar
  16. Couch, R.B., Douglas, R.G. Jr., Fedson, D.S., Kasel, J.A., 1971. Correlated studies of a recombinant influenza-virus vaccine. III. Protection against experimental influenza in man. J. Infect. Dis. 124, 473–480. Google Scholar
  17. Couch, R.B., Kasel, J.A., Gerin, J.A., Schulman, J.L., Kilbourne, E.D., 1974. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J. Infect. Dis. 129, 411–420. Google Scholar
  18. D’Alessio, D.J., Peterson, J.A., Dick, C.R., Dick, E.C., 1976. Transmission of experimental rhinovirus colds in volunteer married couples. J. Infect. Dis. 133, 28–36. Google Scholar
  19. D’Alessio, D.J., Meschievitz, C.K., Peterson, J.A., Dick, C.R., Dick, E.C., 1984. Short-duration exposure and the transmission of rhinoviral colds. J. Infect. Dis. 150, 189–194. Google Scholar
  20. de Jong, M.D., Tran, T.T., Truong, H.K., Vo, M.H., Smith, G.J., Chau, N.V., Van Cam, B., Qui, P.T., Ha, D.Q., Guan, Y., Peiris, J.S.M., Hien, T.T., Farrar, J., 2005. Oseltamivir resistance during treatment of infleunza A (H5N1) infection. N. Engl. J. Med. 353, 2667–2672. CrossRefGoogle Scholar
  21. Dick, E.C., Jennings, L.C., Mink, K.A., Wartgow, C.D., Inhorn, S.L., 1987. Aerosol transmission of rhinovirus colds. J. Infect. Dis. 156, 442–448. Google Scholar
  22. Douglas, R.G., 1970. Pathogenesis of rhinovirus common colds in human volunteers. Ann. Otol. Rhinol. Laryngol. 79, 563–571. Google Scholar
  23. Douglas, R.G. Jr., 1975. Influenza in man. In: Kilbourne, E.D. (Ed.), The Influenza Viruses and Influenza, pp. 395–447. Academic Press, New York. Google Scholar
  24. Douglas, R.G. Jr., Cate, T.R., Gerone, P.J., Couch, R.B., 1966. Quantitative rhinovirus shedding patterns in volunteers. Am. Rev. Respir. Dis. 94, 159–167. Google Scholar
  25. Duguid, J.P., 1946. The size and duration of air-carriage of respiratory droplets and aerosol. J. Hyg. 4, 471–480. Google Scholar
  26. Ferguson, N., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S., 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–214. CrossRefGoogle Scholar
  27. Fox, J.P., Kilbourne, E.D., 1973. From the National Institutes of Health: epidemiology of influenza—summary of influenza workshop IV. J. Infect. Dis. 128, 361–386. Google Scholar
  28. Fox, J.P., Cooney, M.K., Hall, C.E., 1975. The Seattle virus watch. Am. J. Epidemiol. 101, 122–143. Google Scholar
  29. Fox, J.P., Cooney, M.K., Hall, C.E., Foy, H.M., 1985. Rhinoviruses in Seattle families, 1975–1979. Am. J. Epidemiol. 122, 830–846. Google Scholar
  30. Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M., 2004. Factors that make an infectious disease outbreak controllable. PNAS 101, 6146–6151. CrossRefGoogle Scholar
  31. Gerone, P.J., Couch, R.B., Keefer, G.V., Douglas, R.G., Derrenbacker, E.B., Knight, V., 1966. Assessment of experimental and natural viral aerosols. Bact. Rev. 30, 576. Google Scholar
  32. Gwaltney, J.M. Jr., Moskalski, P.B., Hendley, J.O., 1978. Hand-to-hand transmission of rhinovirus colds. Ann. Intern. Med. 88, 463–467. Google Scholar
  33. Hall, C.B., Douglas, R.G. Jr., Geiman, J.M., Meagher, M.P., 1979. Viral shedding patterns of children with influenza B infection. J. Infect. Dis. 140, 610–613. Google Scholar
  34. Harper, G.J., 1961. Airborne micro-organisms: survival tests with four viruses. J. Hyg. (Camb.) 59, 479–486. Google Scholar
  35. Hayden, F.G., Treanor, J.J., Betts, R.F., Lobo, M., Esinhart, J.D., Hussey, E.K., 1996. Safety and efficacy of the neuraminidase inhibitor GG167 in experimental human influenza. JAMA 275, 295–299. CrossRefGoogle Scholar
  36. Hayden, F.G., Fritz, R.S., Lobo, M.C., Alvord, W.G., Strober, W., Straus, S.E., 1998. Local and systemic cytokine responses during experimental human influenza A virus infection. J. Clin. Inv. 101, 643–649. CrossRefGoogle Scholar
  37. Hayden, F.G., Gubareva, L.V., Monto, A.S., Klein, T.C., Elliott, M.J., Hammond, J.M., Sharp, S.J., Ossi, M.J., 2000. Inhaled zanamivir for the prevention of influenza in families. NEJM 343, 1282–1289. CrossRefGoogle Scholar
  38. Health and Human Services Department, U.S. Government, 2004. HHS Pandemic Influenza Plan. Health and Human Services Department, Washington. Google Scholar
  39. Heinsohn, R.J., Cimbala, J.M., 1999. Indoor Air Quality Engineering. Dekker, New York. Google Scholar
  40. Hemmes, J.H., Winkler, K.C., Kool, S.M., 1960. Virus survival as a seasonal factor in influenza and poliomyelitis. Nature 188, 430–431. CrossRefGoogle Scholar
  41. Hendley, J.O., Wenzel, R.P., Gwaltney, J.M. Jr., 1973. Transmission of rhinovirus colds by self-inoculation. NEJM 288, 1361–1364. Google Scholar
  42. Hendley, J.O., Gwaltney, J.M. Jr., 1988. Mechanisms of transmission of rhinovirus infections. Epidemiol. Rev. 10, 242–258. Google Scholar
  43. Hers, J.F.P., Mulder, J., 1961. Broad aspects of the pathology and pathogenesis of human influenza. Am. Rev. Resp. Dis. 83, 84–89. Google Scholar
  44. Hinds, W.C., 1982. Aerosol Technology. Wiley, New York. Google Scholar
  45. Homeland Security Council, 2006. National Strategy for Pandemic Influenza: Implementation Plan. The White House, Washington. Google Scholar
  46. International Commission on Radiological Protection (ICRP), 1994. ICRP Publication 66: Human respiratory tract model for radiological protection. Ann. ICRP 24, 36–54 and 231–299 (Pergamon Press, New York). CrossRefGoogle Scholar
  47. Jennings, L.C., Dick, E.C., 1987. Transmission and control of rhinovirus colds. Eur. J. Epidemiol. 3, 327–335. CrossRefGoogle Scholar
  48. Kaiser, L., Henry, D., Flack, N.P., Keene, O., Hayden, F.G., 2000. Short-term treatment with zanamivir to prevent influenza: results of a placebo-controlled study. Clin. Infect. Dis. 30, 587–589. CrossRefGoogle Scholar
  49. Karim, Y.G., Ijaz, M.K., Sattar, S.A., Johnson-Lussenburg, C.M., 1985. Effect of relative humidity on the airborne survival of rhinovirus-14. Can. J. Microbiol. 31, 1058–1061. CrossRefGoogle Scholar
  50. Khan, T.A., Higuchi, H., Marr, D.R., Glauser, M.N., 2004. Unsteady flow measurements of human microenvironment using time resolved particle image velocimetry. RoomVent 2004, Coimbra, Portugal, September 5–8, 2004. Google Scholar
  51. Knight, V., 1973. Airborne transmission and pulmonary deposition of respiratory viruses. In: Knight, V. (Ed.), Viral and Mycoplasmal Infections of the Respiratory Tract, pp. 1–9. Lea & Febiger, Philadelphia. Google Scholar
  52. Knight, V., Fedson, D., Baldini, J., Douglas, R.G. Jr., Couch, R.B., 1970. Amantadine therapy of epidemic influenza A2 (Hong Kong). Infect. Immun. 1, 200–204. Google Scholar
  53. Le, Q.M., Kiso, M., Someya, K., Sakai, Y.T., Nguyen, T.H., Nguyen, K.H.L., Pham, N.D., Ngyen, H.H., Yamada, S., Muramoto, Y., Horimoto, T., Takada, A., Goto, H., Suzuki, T., Suzuki, Y., Kawaoka, Y., 2005. Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108. CrossRefGoogle Scholar
  54. Leadbetter, M.R., Lindgren, G., Holger, R., 1980. Extremes and Related Properties of Random Sequences and Processes. Springer, New York. Google Scholar
  55. Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M., 2005. Superspreading and the impact of individual variation on disease emergence. Nature 438, 355–359. CrossRefGoogle Scholar
  56. Longini, I.M. Jr., Koopman, J.S., 1982. Household and community transmission parameters from final distributions of infections in households. Biometrics 38, 115–126. MATHCrossRefGoogle Scholar
  57. Loosli, C.G., Lemon, H.M., Robertson, O.H., Appel, E., 1943. Experimental air-borne influenza infection. I. Influence of humidity on survival of virus in air. Proc. Soc. Exp. Biol. 53, 205–206. Google Scholar
  58. Loudon, R.G., Brown, L.C., 1967. Cough frequency in patients with respiratory disease. Am. Rev. Resp. Dis. 96, 1137–1143. Google Scholar
  59. Loudon, R.G., Roberts, R.M., 1967. Droplet expulsion from the respiratory tract. Am. Rev. Resp. Dis. 95, 435–442. Google Scholar
  60. Markel, H., Stern, A.M., Navarro, J.A., Michalsen, J.R., 2006. A historical assessment of nonpharmaceutical disease containment strategies employed by selected U.S. communities during the second wave of the 1918–1920 influenza pandemic. Defense Threat Reduction Agency, Fort Belvoir, VA, http://www.dtra.mil/asco/DTRAFinalInfluenzaReport.pdf.
  61. McLean, R.L., 1961. General discussion: the mechanism of spread of Asian influenza. Am. Rev. Respir. Dis. 83, 36–38. Google Scholar
  62. Meschievitz, C.K., Schultz, S.B., Dick, E.C., 1984. A model for obtaining predictable natural transmission of rhinoviruses in human volunteers. J. Infect. Dis. 150, 195–201. Google Scholar
  63. Miller, S.L., Nazaroff, W.W., 2001. Environmental tobacco smoke particles in multizone indoor environments. Atmos. Environ. 35, 2053–2067. CrossRefGoogle Scholar
  64. Morens, D.M., Rash, V.M., 1995. Lessons from a nursing home outbreak of influenza A. Infect. Control Hosp. Epidemiol. 16, 275–280. CrossRefGoogle Scholar
  65. Moser, M.R., Bender, T.R., Margolis, H.S., Noble, G.R., Kendal, A.P., Ritter, D.G., 1979. An outbreak of influenza aboard a commercial airliner. Am. J. Epidemiol. 110, 1–6. Google Scholar
  66. Nicas, M., Sun, G., 2006. An integrated model of infection risk in a health-care environment. Risk Anal. 26, 1085–1096. CrossRefGoogle Scholar
  67. Nicas, M., Nazaroff, W.W., Hubbard, A., 2005. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J. Occup. Environ. Hyg. 2, 143–154. CrossRefGoogle Scholar
  68. Niinimaa, V., Cole, P., Mintz, S., Shephard, R.J., 1980. The switching point from nasal to oronasal breathing. Respir. Physiol. 42, 61–71. CrossRefGoogle Scholar
  69. Papineni, R.S., Rosenthal, F.S., 1997. The size distribution of droplets in the exhaled breath of healthy subjects. J. Aer. Med. 10, 105–116. Google Scholar
  70. Phelps, E.B., 1942. The state of suspension of bacteria in the air as measured by settling rates. In: Aerobiology, AAAS, Publication No. 17, pp. 133–137. Washington. Google Scholar
  71. Rampey, A.H. Jr., Longini, I.M. Jr., Haber, M., Monto, A.S., 1992. A discrete-time model for the statistical analysis of infectious disease incidence data. Biometrics 48, 117–128. CrossRefGoogle Scholar
  72. Reed, S.E., 1975. An investigation of the possible transmission of rhinovirus colds through indirect contact. J. Hyg. (Camb.) 75, 249–258. Google Scholar
  73. Rogers, G.N., D’Souza, B.L., 1989. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173, 317–322. CrossRefGoogle Scholar
  74. Rudnick, S.N., Milton, D.K., 2003. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 13, 237–245. CrossRefGoogle Scholar
  75. Ryan, M.A.K., Christian, R.S., Wohlrabe, J., 2001. Handwashing and respiratory illness among young adults in military training. Am. J. Prev. Med. 21, 79–83. CrossRefGoogle Scholar
  76. Schaffer, F.L., Soergel, M.E., Straube, D.C., 1976. Survival of airborne influenza virus: effects of propogating host, relative humidity, and composition of spray fluids. Arch. Virol. 51, 263–273. CrossRefGoogle Scholar
  77. Sherman, M.H., Matson, N., 1997. Residential ventilation and energy characteristics. ASHRAE Trans. 103, 717–730. Google Scholar
  78. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y., 2006. Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436. CrossRefGoogle Scholar
  79. Tannock, G.A., Gillett, S.M., Gillett, R.S., Barry, R.D., Hensley, M.J., Herd, R., Reid, A.L.A., Saunders, N.A., 1988. A study of intranasally administered interferon A (rIFN-alpha 2A) for the seasonal prophylaxis of natural viral infections of the upper respiratory tract in healthy volunteers. Epidem. Infect. 101, 611–621. Google Scholar
  80. Tellier, R., 2006. Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 12, 1657–1662. Google Scholar
  81. Tumpey, T.M., Basler, C.F., Aguilar, P.V., Zeng, H., Solorzano, A., Swayne, D., Cox, N.J., Katz, J.M., Taubenberger, J.K., Palese, P., Garcia-Sastre, A., 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80. CrossRefGoogle Scholar
  82. Wallace, L., 1996. Indoor particles: a review. Air Waste Manag. Assoc. 46, 98–126. Google Scholar
  83. Wein, L.M., Atkinson, M.P., 2006. Assessing Infection Control Measures for Pandemic Influenza. Graduate School of Business, Stanford University, Stanford. Google Scholar
  84. Wells, W.F., 1955. Airborne Contagion and Hygiene. Harvard University Press, Cambridge. Google Scholar
  85. Winkler, K.C., 1973. In: Hers, J.F.P., Winkler, K.C. (Eds.), Aerosol Transmission and Airborne Infection. Wiley, New York. Google Scholar
  86. Winther, B., Gwaltney, J.M. Jr., Mygind, N., Turner, R.B., Hendley, J.O., 1986. Sites of rhinovirus recovery after point inoculation of the upper airway. JAMA 256, 1763–1767. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2008

Authors and Affiliations

  1. 1.Institute for Computational and Mathematical EngineeringStanford UniversityStanfordUSA
  2. 2.Graduate School of BusinessStanford UniversityStanfordUSA

Personalised recommendations