Bulletin of Mathematical Biology

, Volume 69, Issue 8, pp 2737–2772 | Cite as

Modelling the Role of Angiogenesis and Vasculogenesis in Solid Tumour Growth

  • I. J. StamperEmail author
  • H. M. Byrne
  • M. R. Owen
  • P. K. Maini
Original Article


Recent experimental evidence suggests that vasculogenesis may play an important role in tumour vascularisation. While angiogenesis involves the proliferation and migration of endothelial cells (ECs) in pre-existing vessels, vasculogenesis involves the mobilisation of bone-marrow-derived endothelial progenitor cells (EPCs) into the bloodstream. Once blood-borne, EPCs home in on the tumour site, where subsequently they may differentiate into ECs and form vascular structures.

In this paper, we develop a mathematical model, formulated as a system of nonlinear ordinary differential equations (ODEs), which describes vascular tumour growth with both angiogenesis and vasculogenesis contributing to vessel formation. Submodels describing exclusively angiogenic and exclusively vasculogenic tumours are shown to exhibit similar growth dynamics. In each case, there are three possible scenarios: the tumour remains in an avascular steady state, the tumour evolves to a vascular equilibrium, or unbounded vascular growth occurs. Analysis of the full model reveals that these three behaviours persist when angiogenesis and vasculogenesis act simultaneously. However, when both vascularisation mechanisms are active, the tumour growth rate may increase, causing the tumour to evolve to a larger equilibrium size or to expand uncontrollably. Alternatively, the growth rate may be left unaffected, which occurs if either vascularisation process alone is able to keep pace with the demands of the growing tumour.

To clarify further the effects of vasculogenesis, the full model is also used to compare possible treatment strategies, including chemotherapy and antiangiogenic therapies aimed at suppressing vascularisation. This investigation highlights how, dependent on model parameter values, targeting both ECs and EPCs may be necessary in order to effectively reduce tumour vasculature and inhibit tumour growth.


Tumour growth Angiogenesis Vasculogenesis Endothelial progenitor cell Therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghi, M., Chiocca, E.A., 2005. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol. Ther. 12(6), 994–1005. CrossRefGoogle Scholar
  2. Amidon, G.L., Lee, P.I., Topp, E.M., 2000. Transport Processes in Pharmaceutical Systems. Dekker, New York. Google Scholar
  3. Arakelyan, L., Vainstein, V., Agur, Z., 2002. A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth. Angiogenesis 5(3), 203–214. CrossRefGoogle Scholar
  4. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., Isner, J.M., 1997. Isolation of putative endothelial cells for angiogenesis. Science 275(5302), 964–967. CrossRefGoogle Scholar
  5. Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., Inai, Y., Silver, M., Isner, J.M., 1999. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18(14), 3964–3972. CrossRefGoogle Scholar
  6. Bolontrade, M.F., Zhou, R.-R., Kleinerman, E.S., 2002. Vasculogenesis plays a role in the growth of Ewing’s sarcoma in Vivo. Clin. Cancer Res. 8(11), 3622–3627. Google Scholar
  7. Breward, C.J.W., Byrne, H.M., Lewis, C.E., 2003. A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65(4), 609–640. CrossRefGoogle Scholar
  8. Byrne, H.M., Owen, M.R., Alarcón, T., Murphy, J., Maini, P.K., 2006. Modelling the response of vascular tumours to chemotherapy: a multiscale approach. Math. Models Methods Appl. Sci. 16(Suppl. Issue 1), 1219–1241. zbMATHCrossRefMathSciNetGoogle Scholar
  9. Carmeliet, P., 2003. Angiogenesis in health and disease. Nat. Med. 9(6), 653–660. CrossRefGoogle Scholar
  10. Carmeliet, P., Jain, R.K., 2000. Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257. CrossRefGoogle Scholar
  11. di Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Olivar, G., Piiroinen, P.T., Bifurcations in nonsmooth dynamical systems. BCANM Preprint 2005.4,
  12. Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Paku, S., Kenessey, I., Ostoros, G., Magyar, M., Ladanyi, A., Bogos, K., Tovari, J., 2006. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res. 66(14), 7341–7347. CrossRefGoogle Scholar
  13. Drake, C.J., 2003. Embryonic and adult vasculogenesis. Birth Defects Res. Part C 69(1), 73–82. CrossRefGoogle Scholar
  14. Duda, D.G., Cohen, K.S., Kozin, S.V., Perentes, J.Y., Fukumura, D., Scadden, D.T., Jain, R.K., 2006. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood 107(7), 2774–2776. CrossRefGoogle Scholar
  15. Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems. A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia. zbMATHGoogle Scholar
  16. Folkman, J., 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186. CrossRefGoogle Scholar
  17. Gerlowski, L.E., Jain, R.K., 1983. Physiologically based pharmacokinetic modeling: principles and applications. J. Pharm. Sci. 72(10), 1103–1127. CrossRefGoogle Scholar
  18. Gill, M., Dias, S., Hattori, K., Rivera, M.L., Hicklin, D., Witte, L., Girardi, L., Yurt, R., Himel, H., Rafii, S., 2001. Vascular trauma induces rapid but transient mobilization of VEGFR2+AC133+ endothelial precursor cells. Circ. Res. 88(2), 167–174. Google Scholar
  19. Griffon-Etienne, G., Boucher, Y., Brekken, C., Suit, H.D., Jain, R.K., 1999. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumours: clinical implications. Cancer Res. 59(15), 3776–3782. Google Scholar
  20. Harris, A.L., 2002. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2(1), 38–47. CrossRefGoogle Scholar
  21. Hattori, K., Dias, S., Heissig, B., Hackett, N.R., Lyden, D., Tateno, M., Hicklin, D.J., Zhu, Z., Witte, L., Crystal, L.G., Moore, M.A.S., Rafii, S., 2001. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193(9), 1005–1014. CrossRefGoogle Scholar
  22. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N.R., Crystal, R.G., Besmer, P., Lyden, D., Moore, M.A.S., Werb, Z., Rafii, S., 2002. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109(5), 625–637. CrossRefGoogle Scholar
  23. Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., Jain, R.K., 1997. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotech. 15(8), 778–783. CrossRefGoogle Scholar
  24. Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T., De Bruijn, E.A., 2004. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56(4), 549–580. CrossRefGoogle Scholar
  25. Hristov, M., Erl, W., Weber, P.C., 2003. Endothelial progenitor cells, mobilization, differentiation and homing. Art. Thromb. Vasc. Biol. 23(7), 1185–1189. CrossRefGoogle Scholar
  26. Hunting, C.B., Noort, W.A., Zwaginga, J.J., 2005. Circulating endothelial (progenitor) cells reflect the state of the endothelium: vascular injury, repair and neovascularization. Vox Sang. 88(1), 1–9. CrossRefGoogle Scholar
  27. Hur, J., Yoon, C.-H., Kim, H.-S., Choi, J.-H., Kang, H.-J., Hwang, K.-K., Oh, B.-H., Lee, M.-M., Park, Y.-B., 2004. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Art. Thromb. Vasc. Biol. 24(2), 288–293. CrossRefGoogle Scholar
  28. Jain, R.K., 1988. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658. Google Scholar
  29. Jain, R.K., 2003. Molecular regulation of vessel maturation. Nat. Med. 9(6), 685–693. CrossRefGoogle Scholar
  30. Jin, H., Aiyer, A., Su, J., Borgstrom, P., Stupack, D., Friedlander, M., Varner, J., 2006. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J. Clin. Invest. 116(3), 652–662. CrossRefGoogle Scholar
  31. Jordan, D.W., Smith, P., 1999. Nonlinear Ordinary Differential Equations. An Introduction to Dynamical Systems, 3rd edn. Oxford University Press, Oxford. zbMATHGoogle Scholar
  32. Ke, L.D., Shi, Y.-X., Im, S.-A., Chen, X., Yung, W.K.A., 2000. The relevance of cell proliferation, vascular endothelial growth factor production, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines. Clin. Cancer Res. 6, 2562–2572. Google Scholar
  33. Khakoo, A.Y., Finkel, T., 2005. Endothelial progenitor cells. Annu. Rev. Med. 56, 79–101. CrossRefGoogle Scholar
  34. Kim, H.K., Song, K.S., Kim, H.O., Chung, J.-H., Lee, K.R., Lee, Y.-J., Lee, D.H., Lee, E.S., Kim, H.K., Ryu, K.W., Bae, J.-M., 2003. Circulating numbers of endothelial progenitor cells in patients with gastric and breast cancer. Cancer Lett. 198(1), 83–88. CrossRefGoogle Scholar
  35. Kolomecki, K., Stepien, H., Bartos, M., Kuzdak, K., 2001. Usefulness of VEGF, MMP-2, MMP-3 and TIMP-2 serum level evaluation in patients with adrenal tumours. Endo. Reg. 35(1), 9–16. Google Scholar
  36. Komarova, N.L., Mironov, V., 2005. On the role of endothelial progenitor cells in tumor neovascularization. J. Theor. Biol. 235(3), 338–349. CrossRefMathSciNetGoogle Scholar
  37. Kraft, A., Weindel, K., Ochs, A., Marth, C., Zmija, J., Schumacher, P., Unger, C., Marme, D., Gastl, G., 1999. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 85, 178–187. CrossRefGoogle Scholar
  38. Leine, R.I., van Campen, D.H., van de Vrande, B.L., 2000. Bifurcations in nonlinear discontinuous systems. Nonlin. Dyn. 23(2), 105–164. zbMATHCrossRefGoogle Scholar
  39. Li, H., Gerald, W.L., Benezra, R., 2004. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res. 64(17), 6137–6143. CrossRefGoogle Scholar
  40. Li, B., Sharpe, E.E., Maupin, A.B., Teleron, A.A., Pyle, A.L., Carmeliet, P., Young, P.P., 2006. VEGF and P1GF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB 20, E664–E676. Google Scholar
  41. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N.R., Crystal, R.G., Moore, M.A.S., Hajjar, K.A., Manova, K., Benezra, R., Rafii, S., 2001. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumour angiogenesis and growth. Nat. Med. 7(11), 1194–1201. CrossRefGoogle Scholar
  42. Mantzaris, N.V., Webb, S., Othmer, H.G., 2004. Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49(2), 111–187. zbMATHCrossRefMathSciNetGoogle Scholar
  43. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., 2006. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589. CrossRefMathSciNetGoogle Scholar
  44. Moore, M.A.S., Hattori, K., Heissig, B., Shieh, J.-H., Dias, S., Crystal, R.G., Rafii, S., 2001. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann. New York Acad. Sci. 938, 36–47. CrossRefGoogle Scholar
  45. Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, New York. zbMATHGoogle Scholar
  46. Oku, T., Tjuvajev, J.G., Miyagawa, T., Sasajima, T., Joshi, A., Joshi, R., Finn, R., Claffey, K.P., Blasberg, R.G., 1998. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res. 58(18), 4185–4192. Google Scholar
  47. Padera, T.P., Stoll, B.R., Tooredman, J.B., Capen, D., di Tomaso, E., Jain, R.K., 2004. Cancer cells compress intratumour vessels. Nature 427(6976), 695. CrossRefGoogle Scholar
  48. Peters, B.A., Diaz , L.A. Jr., Polyak, K., Meszler, L., Romans, K., Guinan, E.C., Antin, J.H., Myerson, D., Hamilton, S.R., Vogelstein, B., Kinzler, K.W., Lengauer, C., 2005. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat. Med. 11(3), 261–262. CrossRefGoogle Scholar
  49. Rafii, S., Lyden, D., Benezra, R., Hattori, K., Heissig, B., 2002. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?. Nat. Rev. Cancer 2(11), 826–835. CrossRefGoogle Scholar
  50. Ribatti, D., 2004. The involvement of endothelial progenitor cells in tumor angiogenesis. J. Cell Mol. Med. 8(3), 294–300. CrossRefGoogle Scholar
  51. Risau, W., Flamme, I., 1995. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91. CrossRefGoogle Scholar
  52. Schatteman, G.C., Awad, O., 2004. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat. Rec. Part A 276, 13–21. CrossRefGoogle Scholar
  53. Shargel, L., Yu, A.B.C., 1999. Applied Biopharmaceutics & Pharmacokinetics, 4th edn. Appleton & Lange. Google Scholar
  54. Soker, S., Gollamudi-Payne, S., Fidder, H., Charmahelli, H., Klagsbrun, M., 1997. Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J. Biol. Chem. 272(50), 31582–31588. CrossRefGoogle Scholar
  55. Song, S., Ewald, A.J., Stallcup, W., Werb, Z., Bergers, G., 2005. PDGFRβ + perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat. Cell Biol. 7(9), 870–879. CrossRefGoogle Scholar
  56. Spring, H., Schüler, T., Arnold, B., Hämmerling, G.J., Ganss, R., 2005. Chemokines direct endothelial progenitors into tumor neovessels. Proc. Natl. Acad. Sci. USA 102(50), 18111–18116. CrossRefGoogle Scholar
  57. Stoll, B.R., Migliorini, C., Kadambi, A., Munn, L.L., Jain, R.K., 2003. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumor: implications for antiangiogenic therapy. Blood 102(7), 2555–2561. CrossRefGoogle Scholar
  58. Sussman, L.K., Upalakalin, J.N., Roberts, M.J., Kocher, O., Benjamin, L.E., 2003. Blood markers for vasculogenesis increase with tumour progression in patients with breast carcinoma. Cancer Biol. Ther. 2(3), 255–256. Google Scholar
  59. Tannock, I.F., 1970. Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res. 30, 2470–2476. Google Scholar
  60. Tannock, I.F., Hayashi, S., 1972. The proliferation of capillary endothelial cells. Cancer Res. 32, 77–82. Google Scholar
  61. Tepper, O.M., Capla, J.M., Galiano, R.D., Ceradini, D.J., Callaghan, M.J., Kleinman, M.E., Gurtner, G.C., 2005. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105(3), 1068–1077. CrossRefGoogle Scholar
  62. Thompson, H.J., Strange, R., Schedin, P.J., 1992. Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol. Biomark. Prev. 1, 597–602. Google Scholar
  63. Vajkoczy, P., Blum, S., Lamparter, M., Mailhammer, R., Erber, R., Engelhardt, B., Vestweber, D., Hatzopoulos, A.K., 2003. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J. Exp. Med. 197(12), 1755–1765. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2007

Authors and Affiliations

  • I. J. Stamper
    • 1
    Email author
  • H. M. Byrne
    • 1
  • M. R. Owen
    • 1
  • P. K. Maini
    • 2
    • 3
  1. 1.Centre for Mathematical Medicine, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
  2. 2.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  3. 3.Oxford Centre for Integrative Systems Biology, Dept. of BiochemistryOxfordUK

Personalised recommendations