Bulletin of Mathematical Biology

, Volume 70, Issue 1, pp 68–88 | Cite as

Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus

  • Julie V. Stern
  • Hinke M. Osinga
  • Andrew LeBeau
  • Arthur Sherman
Original Article

Abstract

We study a recently discovered class of models for plateau bursting, inspired by models for endocrine pituitary cells. In contrast to classical models for fold-homoclinic (square-wave) bursting, the spikes of the active phase are not supported by limit cycles of the frozen fast subsystem, but are transient oscillations generated by unstable limit cycles emanating from a subcritical Hopf bifurcation around a stable steady state. Experimental time courses are suggestive of such fold-subHopf models because the spikes tend to be small and variable in amplitude; we call this pseudo-plateau bursting. We show here that distinct properties of the response to attempted resets from the silent phase to the active phase provide a clearer, qualitative criterion for choosing between the two classes of models. The fold-homoclinic class is characterized by induced active phases that increase towards the duration of the unperturbed active phase as resets are delivered later in the silent phase. For the fold-subHopf class of pseudo-plateau bursting, resetting is difficult and succeeds only in limited windows of the silent phase but, paradoxically, can dramatically exceed the native active phase duration.

Keywords

Bursting Calcium oscillations Pituitary Stable and unstable manifolds Fast-slow systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baer, S.M., Rinzel, J., 1988. Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations. Biophys. J. 54(3), 551–555. Google Scholar
  2. Bertram, R., Butte, M., Kiemel, T., Sherman, A., 1995. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439. MATHGoogle Scholar
  3. Butera, R. Jr., Rinzel, J., Smith, J.C., 1999. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82(1), 382–397. Google Scholar
  4. Chay, T.R., Keizer, J., 1983. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–190. Google Scholar
  5. Doedel, E., 1981. AUTO: A program for the automatic bifurcation analysis of autonomous systems. Cong. Num. 30, 265–284. MathSciNetGoogle Scholar
  6. England, J.P., Krauskopf, B., Osinga, H.M., 2007. Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurc. Chaos 17(3), 805–822. CrossRefMathSciNetMATHGoogle Scholar
  7. Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Philadelphia. MATHGoogle Scholar
  8. Golubitsky, M., Josic, K., Kaper, T.J., 2001. An unfolding theory approach to bursting in fast-slow systems. In: H. Broer, B. Krauskopf, G. Vegter (Eds.), Analysis of Dynamical Systems: Festschrift Dedicated to Floris Takens on the Occasion of his 60th Birthday, pp. 277–308. Institute of Physics, Bristol. Google Scholar
  9. Izhikevich, E.M., 2000. Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266. MATHCrossRefMathSciNetGoogle Scholar
  10. Kinard, T.A., de Vries, G., Sherman, A., Satin, L.S., 1999. Modulation of the bursting properties of single mouse pancreatic β-cells by artificial conductances. Biophys. J. 76, 1423–1435. CrossRefGoogle Scholar
  11. Krauskopf, B., Osinga, H.M., 2003. Computing geodesic level sets on global (un)stable manifold of vector fields. SIAM J. Appl. Dyn. Syst. 2(4), 546–569. MATHCrossRefMathSciNetGoogle Scholar
  12. Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J.M., Vladimirsky, A., Dellnitz, M., Junge, O., 2005. A survey of methods for computing (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Syst. 15(3), 763–791. MATHMathSciNetGoogle Scholar
  13. Kuryshev, Y.A., Childs, G.V., Ritchie, A.K., 1996. Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes. Endocrinology 137(6), 2269–2277. CrossRefGoogle Scholar
  14. LeBeau, A.P., Robson, A.B., McKinnon, A.E., Sneyd, J., 1998. Analysis of a reduced model of corticotroph action potentials. J. Theor. Biol. 192, 319–339. CrossRefGoogle Scholar
  15. Lisman, J., 1997. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20(1), 38–43. CrossRefGoogle Scholar
  16. Phillips, M., Levy, S., Munzner, T., 1993. Geomview: an interactive geometry viewer. Not. Am. Math. Soc. 40, 985, http://www.geomview.org. Google Scholar
  17. Rinzel, J., 1987. A formal classification of bursting mechanisms in excitable systems. In: E. Teramoto, M. Yamaguti (Eds.), Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences. Lecture Notes in Biomathematics, vol. 71, pp. 267–281. Springer, New York. Google Scholar
  18. Sherman, A., Rinzel, J., Keizer, J., 1988. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425. Google Scholar
  19. Stojilkovic, S.S., Zemkova, H., van Goor, F., 2005. Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol. Metab. 16(4), 152–159. CrossRefGoogle Scholar
  20. Tabak, J., Senn, W., O’Donovan, M.J., Rinzel, J., 2000. Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J. Neurosci. 20(8), 3041–3056. Google Scholar
  21. Tabak, J., Toporikova, N., Freeman, M.E., Bertram, R., 2007. Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J. Comput. Neurosci. Epub. Ahead of print DOI  10.1007/s10,827-006-0008-4.
  22. Terman, D., 1991. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418–1450. MATHCrossRefMathSciNetGoogle Scholar
  23. Tsaneva-Atanasova, K., Sherman, A., van Goor, F., Stojilkovic, S.S., 2007. Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs. J. Neurophysiol. 98(1), 131–144. CrossRefGoogle Scholar
  24. van Goor, F., Li, Y.X., Stojilkovic, S., 2001. Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J. Neurosci. 21, 5902–5915. Google Scholar

Copyright information

© Society for Mathematical Biology 2007

Authors and Affiliations

  • Julie V. Stern
    • 1
  • Hinke M. Osinga
    • 2
  • Andrew LeBeau
    • 1
  • Arthur Sherman
    • 1
  1. 1.Laboratory of Biological ModelingNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations