Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Combinatorics of RNA Structures with Pseudoknots

Abstract

In this paper, we derive the generating function of RNA structures with pseudoknots. We enumerate all k-noncrossing RNA pseudoknot structures categorized by their maximal sets of mutually intersecting arcs. In addition, we enumerate pseudoknot structures over circular RNA. For 3-noncrossing RNA structures and RNA secondary structures we present a novel 4-term recursion formula and a 2-term recursion, respectively. Furthermore, we enumerate for arbitrary k all k-noncrossing, restricted RNA structures i.e. k-noncrossing RNA structures without 2-arcs i.e. arcs of the form (i,i+2), for 1≤in−2.

This is a preview of subscription content, log in to check access.

References

  1. Akutsu, T., 2000. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discret. Appl. Math. 104, 45–62.

  2. Chen, W.Y.C., Deng, E.Y.P., Du, R.R.X., Stanley, R.P., Yan, C.H., 2007. Crossings and nestings of matchings and partitions. Trans. Am. Math. Soc. 359, 1555–1575.

  3. Gessel, I.M., Zeilberger, D., 1992. Random walk in a Weyl chamber. Proc. Am. Math. Soc. 115, 27–31.

  4. Grabiner, D.J., Magyar, P., 1993. Random walks in Weyl chambers and the decomposition of tensor powers. J. Algebr. Comb. 2, 239–260.

  5. Hasegawa, A., Uemura, Y., Kobayashi, S., Yokomori, T., 1999. Tree adjoining grammars for RNA structure prediction. Theor. Comput. Sci. 210, 277–303.

  6. Haslinger, C., Stadler, P.F., 1999. RNA structures with pseudo-knots. Bull. Math. Biol. 61, 437–467.

  7. Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. Combinatorics of RNA secondary structures. Discret. Appl. Math. 88, 207–237.

  8. Howell, J.A., Smith, T.F., Waterman, M.S., 1980. Computation of generating functions for biological molecules. SIAM J. Appl. Math. 39, 119–133.

  9. Konings, D.A.M., Gutell, R.R., 1995. A comparison of thermodynamic foldings with comparatively derived structures of 16s and 16s-like rRNAs. RNA 1, 559–574.

  10. Lindström, B., 1973. On the vector representation of induced matroids. Bull. Lond. Math. Soc. 5, 85–90.

  11. Loria, A., Pan, T., 1996. Domain structure of the ribozyme from eubacterial ribonuclease p. RNA 2, 551–563.

  12. Lyngso, R., Pedersen, C., 1996. Pseudoknots in RNA secondary structures. In: H. Flyvbjerg, J. Hertz, M.H. Jensen, O.G. Mouritsen, K. Sneppen (Eds.), Physics of Biological Systems: From Molecules to Species. Springer, Berlin.

  13. Mapping RNA form and function, 2005. Science 2.

  14. McCaskill, J.S., 1990. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119.

  15. Parkin, N., Chamorro, M., Varmus, H.E., 1991. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. J. Proc. Natl. Acad. Sci. USA 89, 713–717.

  16. Penner, R.C., Waterman, M.S., 1993. Spaces of RNA secondary structures. Adv. Math. 101, 31–49.

  17. Rivas, E., Eddy, S., 1999. A Dynamic Programming Algorithm for RNA structure prediction inclusing pseudoknots. J. Mol. Biol. 285, 2053–2068.

  18. Schmitt, W.R., Waterman, M.S., 1994. Linear trees and RNA secondary structure. Discret. Appl. Math. 51, 317–323.

  19. Sundaram, S., 1990. The Cauchy identity for Sp(2n). J. Comb. Theory (A) 53, 209–238.

  20. Tacker, M., Fontana, W., Stadler, P.F., Schuster, P., 1994. Statistics of RNA melting kinetics. Eur. Biophys. J. 23, 29–38.

  21. Tacker, M., Stadler, P.F., Bauer, E.G., Hofacker, I.L., Schuster, P., 1996. Algorithm independent properties of RNA secondary structure predictions. Eur. Biophys. J. 25, 115–130.

  22. ten Dam, E., Brierly, I., Inglis, S., Pleij, C., 1994. Identification and analysis of the pseudoknot containing gag-pro ribosomal frameshift signal of simian retrovirus-1. Nucl. Acids Res. 22, 2304–2310.

  23. Tuerk, C., MacDougal, S., Gold, L., 1992. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 89, 6988–6992.

  24. Waterman, M.S., 1978. Secondary structure of single-stranded nucleic acids. Adv. Math. I (Suppl.) 1, 167–212.

  25. Waterman, M.S., 1979. Combinatorics of RNA hairpins and cloverleafs. Stud. Appl. Math. 60, 91–96.

  26. Waterman, M.S., Smith, T.F., 1986. Rapid dynamic programming algorithms for RNA secondary structure. Adv. Appl. Math. 7, 455–464.

  27. Westhof, E., Jaeger, L., 1992. RNA pseudoknots. Curr. Opin. Struct. Biol. 2, 327–333.

  28. Wilf, H.S., Petkovsek, M., Zeilberger, D., 1996. A=B. A.K. Peters Ltd., Wellesly.

  29. Zuker, M., Sankoff, D., 1984. RNA secondary structures and their prediction. Bull. Math. Biol. 46(4), 591–621.

Download references

Author information

Correspondence to Christian M. Reidys.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, E.Y., Qin, J. & Reidys, C.M. Combinatorics of RNA Structures with Pseudoknots. Bull. Math. Biol. 70, 45–67 (2008). https://doi.org/10.1007/s11538-007-9240-y

Download citation

Keywords

  • RNA secondary structure
  • Pseudoknot
  • Enumeration
  • Generating function
  • Reflection principle
  • Walks
  • Weyl-chamber