Bulletin of Mathematical Biology

, Volume 69, Issue 8, pp 2711–2722 | Cite as

Optimal Timing of Disease Transmission in an Age-Structured Population

  • Timothy C. Reluga
  • Jan Medlock
  • Eric Poolman
  • Alison P. Galvani
Original Article

Abstract

It is a common medical folk-practice for parents to encourage their children to contract certain infectious diseases while they are young. This folk-practice is controversial, in part, because it contradicts the long-term public health goal of minimizing disease incidence. We study an epidemiological model of infectious disease in an age-structured population where virulence is age-dependent and show that, in some cases, the optimal behavior will increase disease transmission. This provides a rigorous justification of the concept of “endemic stability,” and demonstrates that folk-practices may have been historically justified.

Keywords

Age-dependent virulence Population games Optimal behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York. Google Scholar
  2. Arrow, K.J., Kurz, M., 1970. Public Investment, the Rate of Return, and Optimal Fiscal Policy. Hopkins Press, Baltimore. Google Scholar
  3. Brommer, J., Kokko, H., Pietiainen, H., 2000. Reproductive effort and reproductive values in periodic environments. Am. Nat. 155, 454–472. CrossRefGoogle Scholar
  4. Busenberg, S., van den Driessche, P., 1990. Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28, 257–280. MATHMathSciNetCrossRefGoogle Scholar
  5. Coleman, P.G., Perry, B.D., Woolhouse, M.E.J., 2001. Endemic stability—a veterinary idea applied to human public health. Lancet 357, 1284–1286. CrossRefGoogle Scholar
  6. Del Valle, S., Hethcote, H., Hyman, J.M., Castillo-Chavez, C., 2005. Effects of behavioural changes in a smallpox attack model. Math. Biosci. 195, 228–251. MATHCrossRefMathSciNetGoogle Scholar
  7. Grundmann, H., Hori, S., Winter, B., Tami, A., Austin, D.J., 2002. Risk factors for the transmission of methicillin-resistant Staphylococcus aureus in an adult intensive care unit: fitting a model to the data. J. Infect. Dis. 185, 481–488. CrossRefGoogle Scholar
  8. Hadeler, K.P., 1992. Periodic-solutions of homogeneous equations. J. Differ. Equ. 95, 183–202. MATHCrossRefMathSciNetGoogle Scholar
  9. Hadeler, K.P., Waldstatter, R., Worzbusekros, A., 1988. Models for pair formation in bisexual populations. J. Math. Biol. 26, 635–649. MATHMathSciNetGoogle Scholar
  10. Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge. MATHGoogle Scholar
  11. Howard, R.A., 1960. Dynamic Programming and Markov Processes. MIT Press, Cambridge. MATHGoogle Scholar
  12. Leavitt, J.W., 1997. Typhoid Mary: Captive to the Public’s Health. Beacon Press, Boston. Google Scholar
  13. Mandell, G.L., Bennett, J.E., Dolin, R. (Eds.), 2005. Principles and Practice of Infectious Disease. Elsevier, Philadelphia. Google Scholar
  14. Maynard Smith, J., 1982. Evolution and the Theory of Games, 1st edn. Cambridge University Press, London. MATHGoogle Scholar
  15. McNamara, J.M., 1997. Optimal life histories for structured populations in fluctuating environments. Theor. Popul. Biol. 51, 94–108. MATHCrossRefGoogle Scholar
  16. McNamara, J.M., Houston, A.I., Collins, E.J., 2001. Optimality models in behavioral biology. SIAM Rev. 43, 413–466. MATHCrossRefMathSciNetGoogle Scholar
  17. Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H., 1992. How should we define fitness for general ecological scenarios. Trends Ecol. Evol. 7, 198–202. CrossRefGoogle Scholar
  18. Morisse, J.P., Le Gall, G., Boilletot, E., 1991. Hepatitis of viral origin in Leporidae: Introduction and aetiological hypotheses. Rev. Sci. Tech. 10, 269–310. Google Scholar
  19. Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, New York. MATHGoogle Scholar
  20. Nathanson, N., Martin, J., 1979. The epidemiology of poliomyelitis: enigmas surrounding its appearance and disappearance. Am. J. Epidemiol. 110, 672. Google Scholar
  21. Pado, F., 2005. Where the play dates are fun, but itchy. New York Times, August 21. Google Scholar
  22. Panagiotopoulos, T., Antoniadou, I., Valassi-Adam, E., 1999. Increase in congenital rubella occurrence after immunisation in Greece: retrospective survey and systematic review. Br. Med. J. 319, 1462–1466. Google Scholar
  23. Parashar, U.D., Hummelman, E.G., Bresee, J.S., Miller, M.A., Glass, R.I., 2003. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9, 565–572. Google Scholar
  24. Paul, J.R., 1971. A History of Poliomyelitis. Yale University Press, New Haven. Google Scholar
  25. Preblud, S.R., 1986. Varicella: complications and costs. Pediatrics 79, 728–735. Google Scholar
  26. van Baalen, M., 1998. Coevolution of recovery ability and virulence. Proc. Biol. Sci. 265, 317–325. CrossRefGoogle Scholar
  27. van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48. MATHCrossRefMathSciNetGoogle Scholar
  28. Weinstein, L., Shelokov, A., Seltser, R., Winchell, G.D., 1952. A comparison of the clinical features of poliomyelitis in adults and in children. New Engl. J. Med. 246, 297–302. CrossRefGoogle Scholar
  29. World Health Organization, 2000. Rubella vaccines. Weekly Epidemiol. Rec. 75, 161–172. Google Scholar

Copyright information

© Society for Mathematical Biology 2007

Authors and Affiliations

  • Timothy C. Reluga
    • 1
    • 2
  • Jan Medlock
    • 1
  • Eric Poolman
    • 1
  • Alison P. Galvani
    • 1
  1. 1.Department of Epidemiology and Public HealthYale University School of MedicineNew HavenUSA
  2. 2.MS-K710, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations