Bulletin of Mathematical Biology

, Volume 69, Issue 7, pp 2139–2180 | Cite as

Estimation of Dynamic Rate Parameters in Insect Populations Undergoing Sublethal Exposure to Pesticides

  • H. T. Banks
  • John E. Banks
  • Lara K. Dick
  • John D. Stark
Original Article

Abstract

With newer, more environmentally friendly and, subsequently less lethal, pesticides in use, evaluating efficacy of a pesticide now requires more than simply counting deaths after treatment. A discrete, age-structured matrix model that incorporates a species’ life history traits (such as birth rate, death rate and fecundity) has previously been used by ecologists. This model will be presented and discussed along with an alternative continuous, age-structured model which offers significant advantage in considering sublethal damage. We use this continuous model to estimate time-dependent mortality parameters in an ordinary least-squares technique. Confidence intervals are given and results from tests for statistical significance of added parameters are presented.

Keywords

Population models Leslie Sinko–Streifer McKendrick–VonForester Time-dependent parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, H.T., Banks, J.E., Dick, L.K., Stark, J.D., 2005. Estimation of Dynamic Rate Parameters in Insect Populations Undergoing Sublethal Exposure to Pesticides, CRSC Tech. Rep. 05-22, May (available at http://www.ncsu.edu/crsc/reports.htm).
  2. Banks, H.T., Fitzpatrick, B.G., 1989. Inverse problems for distributed systems: statistical tests and ANOVA, LCDS/CCS Rep. 88-16, July 1988; Proc. International Symposium on Math. Approaches to Envir. and Ecol. Problems. Springer Lecture Note in Biomath., vol. 81, pp. 262–73. Google Scholar
  3. Banks, H.T., Fitzpatrick, B.G., 1990. Statistical methods for model comparison in parameter estimation problems for distributed systems, CAMS Tech. Rep. 89-4, September 1989, University of Southern California. J. Math. Biol. 28, 501–27. MATHCrossRefMathSciNetGoogle Scholar
  4. Banks, H.T., Kunsich, K., 1989. Estimation Techniques for Distributed Parameter Systems. Birkhauser, Boston. MATHGoogle Scholar
  5. Banks, H.T., Nguyen, H.K., 2006. Sensitivity of dynamical system to Banach space parameters, CRSC Tech Rep., CRSC-TR05-13, N.C. State University, February 2005; J. Math Anal. Appl. 323, 146–61. Google Scholar
  6. Banks, H.T., Tran, H.T., 2007. Mathematical and experimental modeling of physical and biological processes, to appear. Google Scholar
  7. Birch, L.C., 1948. The intrinsic rate of natural increase of an insect population. J. Animal Ecol. 17, 15–6. CrossRefGoogle Scholar
  8. Carey, J.R., 1993. Applied Demography for Biologists with Special Emphasis on Insects. Oxford University Press, Oxford. Google Scholar
  9. Carey, J.R., Liedo, P., 1999. Mortality dynamics of insects: General principals derived from aging research on the Mediterranean fruit fly (diptera: Tephritidae). Am. Entomol. 45(1), 49–5. Google Scholar
  10. Casella, G., Berger, R.L., 2002. Statistical Inference. Duxbury, California. Google Scholar
  11. Caswell, H., 2001. Matrix Population Models. Sinauer, Sunderland. Google Scholar
  12. Davidian, M., Giltinan, D., 1998. Nonlinear Models for Repeated Measurement Data. Chapman & Hall, London. Google Scholar
  13. Dick, L.K., 2005. Prediction of life history traits in invertebrate species exposed to pesticide. Master Thesis, North Carolina State University, Raleigh. Google Scholar
  14. Efron, B., 1982. The Jackknife, the Bootstrap and Other Resampling Plans. CBMS, vol. 38. Society for Industrial and Applied Mathematics, Philadelphia. Google Scholar
  15. Fitzpatrick, B.G., 1988. Statistical methods in parameter identification and model selection. Ph.D. Thesis, Division of Applied Mathematics, Brown University, Providence, RI. Google Scholar
  16. Gallant, A.R., 1987. Nonlinear Statistical Models. Wiley, New York. MATHCrossRefGoogle Scholar
  17. Henson, S.M., 1998. Leslie matrix models as “stroboscopic snapshots” of McKendrick PDE models. J. Math. Biol. 37, 309–28. MATHCrossRefMathSciNetGoogle Scholar
  18. Jennrich, R.I., 1969. Asymptotic properties of non-linear least squares estimators. Ann. Math. Stat. 40, 633–43. MATHCrossRefMathSciNetGoogle Scholar
  19. Kelley, C.T., 1999. Iterative Methods for Optimization. Society for Industrial and Applied Mathematics, Philadelphia. MATHGoogle Scholar
  20. Kot, M., 2001. Elements of Mathematical Ecology. Cambridge University Press, Cambridge. Google Scholar
  21. Ladin, J., Wennergren, U., 1993. Population growth and structure in a variable environment. Oecologia 93, 394–05. CrossRefGoogle Scholar
  22. Lehmann, E.L., 1999. Elements of Large-Sample Theory. Springer, New York. MATHCrossRefGoogle Scholar
  23. Leslie, P.H., 1945. On the use of matrices in certain population mathematics. Biometrika 33, 183–12. MATHCrossRefMathSciNetGoogle Scholar
  24. McKendrick, A.G., 1926. Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 40, 98–30. Google Scholar
  25. The NCSU Entomology Homepage, 2007. http://ipm.ncsu.edu/AG271/forages/pea_aphid.html.
  26. Ohman, M.D., Wood, S.N., 1996. Mortality estimation for plankonic copepods: Pseudocalanus newmani in a temperate fjord. Limnol. Oceanograph. 41, 126–35. CrossRefGoogle Scholar
  27. Rangus, T.M., Stark, J.D., 1994. Lethal and sublethal effects of the neem insecticide formulation, ‘Margosan-O’ on the pea aphid. Pestic. Sci. 41, 155–60. CrossRefGoogle Scholar
  28. Seber, G.A.F., Wild, C.J., 1989. Nonlinear Regression. Wiley, New York. MATHCrossRefGoogle Scholar
  29. Sinko, J.W., Streifer, W., 1967. A new model for age-size structure of a population. Ecology 48(6), 910–18. CrossRefGoogle Scholar
  30. Stark, J.D., Banks, J.E., Vargas, R., 2004. How risky is risk assessment: The role that life history strategies play in susceptibility of species to stress. Proc. Natl. Acad. Sci. USA 101, 732–36. CrossRefGoogle Scholar
  31. Stark, J.D., Wennergren, U., 1995. Can population effects of pesticides be predicted from demographic toxicological studies? J. Econ. Entomol. 88, 1089–096. Google Scholar
  32. Uribe, G., 1993. On the relationship between continuous and discrete models for size-structured population dynamics. Doctoral dissertation, University of Arizona, Tucson. Google Scholar
  33. Von Foerster, H., 1959. Some remarks on changing populations. In: Stohlman, F., Jr. (Ed.), The Kinetics of Cellular Proliferation, pp. 382–07. Grune & Stratton, New York, Google Scholar
  34. Wackerly, D.D., Mendenhall III, W., Scheaffer, R.L., 2002. Mathematical Statistics with Applications. Duxbury Thompson Learning, USA. Google Scholar
  35. Walthall, W.K., Stark, J.D., 1997. Comparison of two population-level ecotoxicological endpoints: The intrinsic (r m) and instantaneous (r i) rates of increase. Environ. Toxicol. Chem. 16, 1068–073. CrossRefGoogle Scholar
  36. Wennergren, U., Stark, J.D., 2000. Modeling long-term effects of pesticides on populations: Beyond just counting dead animals. Ecol. Appl. 10, 295–02. CrossRefGoogle Scholar
  37. Wood, S.N., 1992. Spline models of biological population dynamics: How to estimate mortality rates for stage structured populations with dimorphic life histories. J. Math. Appl. Med. Biol. 11, 61–8. CrossRefGoogle Scholar
  38. Wood, S.N., 1994. Obtaining birth and mortality patterns from structured population trajectories. Ecol. Monogr. 64(1), 23–4. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • H. T. Banks
    • 1
  • John E. Banks
    • 2
  • Lara K. Dick
    • 1
  • John D. Stark
    • 3
  1. 1.Center for Research in Scientific ComputationNorth Carolina State UniversityRaleighUSA
  2. 2.Environmental Science, Interdisciplinary Arts and SciencesUniversity of WashingtonTacomaUSA
  3. 3.Department of Entomology, Ecotoxicology ProgramWashington State UniversityPuyallupUSA

Personalised recommendations