Bulletin of Mathematical Biology

, Volume 69, Issue 6, pp 2027–2060 | Cite as

Emergence of HIV-1 Drug Resistance During Antiretroviral Treatment

Original Article


Treating HIV-infected patients with a combination of several antiretroviral drugs usually contributes to a substantial decline in viral load and an increase in CD4+ T cells. However, continuing viral replication in the presence of drug therapy can lead to the emergence of drug-resistant virus variants, which subsequently results in incomplete viral suppression and a greater risk of disease progression. In this paper, we use a simple mathematical model to study the mechanism of the emergence of drug resistance during therapy. The model includes two viral strains: wild-type and drug-resistant. The wild-type strain can mutate and become drug-resistant during the process of reverse transcription. The reproductive ratio ℛ0 for each strain is obtained and stability results of the steady states are given. We show that drug-resistant virus is more likely to arise when, in the presence of antiretroviral treatment, the reproductive ratios of both strains are close. The wild-type virus can be suppressed even when the reproductive ratio of this strain is greater than 1. A pharmacokinetic model including blood and cell compartments is employed to estimate the drug efficacies of both the wild-type and the drug-resistant strains. We investigate how time-varying drug efficacy (due to the drug dosing schedule and suboptimal adherence) affects the antiviral response, particularly the emergence of drug resistance. Simulation results suggest that perfect adherence to regimen protocol will well suppress the viral load of the wild-type strain while drug-resistant variants develop slowly. However, intermediate levels of adherence may result in the dominance of the drug-resistant virus several months after the initiation of therapy. When more doses of drugs are missed, the failure of suppression of the wild-type virus will be observed, accompanied by a relatively slow increase in the drug-resistant viral load.


HIV-1 Antiretroviral therapy Adherence Drug resistance Mutation Viral kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajaria, S.H., Webb, G.F., Kirschner, D.E., 2004. Predicting differential responses to structured treatment interruptions during HAART. Bull. Math. Biol. 66, 1093–1118. CrossRefGoogle Scholar
  2. Bangsberg, D.R., Perry, S., Charlebois, E.D., Clark, R.A., Roberston, M., Zolopa, A.R., Moss, A., 2001. Non-adherence to highly active antiretroviral therapy predicts progression to AIDS. AIDS 15, 1181–1183. CrossRefGoogle Scholar
  3. Barbour, J.D., Wrin, T., Grant, R.M., Martin, J.N., Segal, M.R., Petropoulos, C.J., Deeks, S.G., 2002. Evolution of phenotypic drug susceptibility and viral replication capacity during long-term virologic failure of protease inhibitor therapy in human immunodeficiency virus-infected adults. J. Virol. 76, 11104–11112. CrossRefGoogle Scholar
  4. Blower, S.M., Aschenbach, A.N., Gershengorn, H.B., Kahn, J.O., 2001. Predicting the unpredictable: transmission of drug-resistant HIV. Nat. Med. 7, 1016–1020. CrossRefGoogle Scholar
  5. Blower, S.M., Dowlatabadi, H., 1994. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62, 229–243. MATHCrossRefGoogle Scholar
  6. Bofill, M., Janossy, G., Lee, C.A., MacDonald-Burns, D., Phillips, A.N., Sabin, C., Timms, A., Johnson, M.A., Kernoff, P.B., 1992. Laboratory control values for CD4 and CD8 T lymphocytes: implications for HIV-1 diagnosis. Clin. Exp. Immunol. 88, 243–252. CrossRefGoogle Scholar
  7. Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A., 1997. Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94, 6971–6976. CrossRefGoogle Scholar
  8. Bonhoeffer, S., Nowak, M.A., 1997. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc. Roy. Soc. Lond. B 264, 631–637. CrossRefGoogle Scholar
  9. Clavel, F., Hance, A.J., 2004. HIV drug resistance. New Engl. J. Med. 350, 1023–1035. CrossRefGoogle Scholar
  10. Clavel, F., Race, E., Mammano, F., 2000. HIV drug resistance and viral fitness. Adv. Pharmacol. 49, 41–66. CrossRefGoogle Scholar
  11. Coffin, J.M., 1995. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489. CrossRefGoogle Scholar
  12. Collier, A.C., Coombs, R.W., Schoenfeld, D.A., Bassett, R.L., Timpone, J., Baruch, A., Jones, M., Facey, K., Whitacre, C., McAuliffe, V.J., Friedman, H.M., Merigan, T.C., Reichman, R.C., Hooper, C., Corey, L., 1996. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. New Engl. J. Med. 334, 1011–1017. CrossRefGoogle Scholar
  13. Conover, W.J., 1980. Practical Nonparametric Statistics, 2rd edn. Wiley, New York. Google Scholar
  14. Coombs, D., Gilchrist, M.A., Percus, J., Perelson, A.S., 2003. Optimal viral production. Bull. Math. Biol. 65, 1003–1023. CrossRefGoogle Scholar
  15. Deeks, S.G., 2003. Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 362, 2002–2011. CrossRefGoogle Scholar
  16. Deeks, S.G., Grant, R.M., Wrin, T., Paxinos, E.E., Liegler, T., Hoh, R., Martin, J.N., Petropoulos, C.J., 2003. Persistence of drug-resistant HIV-1 after a structured treatment interruption and its impact on treatment response. AIDS 17, 361–370. CrossRefGoogle Scholar
  17. De Jong, M.D., Veenstra, J., Stilianakis, N.I., Schuurman, R., Lange, J.M., De Boer, R.J., Boucher, C.A., 1996. Host-parasite dynamics and outgrowth of virus containing a single K70R amino acid change in reverse transcriptase are responsible for the loss of human immunodeficiency virus type 1 RNA load suppression by zidovudine. Proc. Natl. Acad. Sci. USA 93, 5501–5506. CrossRefGoogle Scholar
  18. De Leenheer, P., Smith, H.L., 2003. Virus dynamics: a global analysis. SIAM J. Appl. Math. 63, 1313–1327. MATHCrossRefMathSciNetGoogle Scholar
  19. Dixit, N.M., Markowitz, M., Ho, D.D., Perelson, A.S., 2004. Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral therapy. Antivir. Ther. 9, 237–246. Google Scholar
  20. Dixit, N.M., Perelson, A.S., 2004. Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226, 95–109. CrossRefMathSciNetGoogle Scholar
  21. Dixit, N.M., Perelson, A.S., 2005. Influence of drug pharmacokinetics on HIV pathogenesis and therapy. In: Tan, W.-Y., Wu, H. (Eds.), Deterministic and Stochastic Models of AIDS and HIV with Intervention, pp. 287–311. World Scientific, Singapore. Google Scholar
  22. Dunn, D.T., Gibb, D.M., Babiker, A.G., Green, H., Darbyshire, J.H., Weller, I.V., 2004. HIV resistance testing: is the evidence really there? Antivir. Ther. 9, 641–648. Google Scholar
  23. Ferguson, N.M., Donnelly, C.A., Hooper, J., Ghani, A.C., Fraser, C., Bartley, L.M., Rode, R.A., Vernazza, P., Lapins, D., Mayer, S.L., Anderson, R.M., 2005. Adherence to antiretroviral therapy and its impact on clinical outcome in HIV-infected patients. J. Roy. Soc. Interface 2, 349–363. CrossRefGoogle Scholar
  24. Fischer, M., Hafner, R., Schneider, C., Trkola, A., Joos, B., Joller, H., Hirschel, B., Weber, R., Gunthard, H.F., Swiss HIV Cohort Study, 2003. HIV RNA in plasma rebounds within days during structured treatment interruptions. AIDS 17, 195–199. CrossRefGoogle Scholar
  25. Friedland, G.H., Williams, A., 1999. Attaining higher goals in HIV treatment: the central importance of adherence. AIDS 13(Suppl. 1), S61–S72. Google Scholar
  26. Gabrielson, J., Weiner, D., 2000. Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications. Swedish Pharmaceutical Press, Stockholm. Google Scholar
  27. Gulick, R.M., 2002. Structured treatment interruption in patients infected with HIV. Drugs 62, 245–253. CrossRefGoogle Scholar
  28. Haase, A.T., Henry, K., Zupancic, M., Sedgewick, G., Faust, R.A., Melroe, H., Cavert, W., Gebhard, K., Staskus, K., Zhang, Z.Q., Dailey, P.J., Balfour, H.H. Jr., Erice, A., Perelson, A.S., 1996. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985–989. CrossRefGoogle Scholar
  29. Havlir, D.V., Eastman, S., Gamst, A., Richman, D.D., 1996. Nevirapine-resistant human immunodeficiency virus: kinetics of replication and estimated prevalence in untreated patients. J. Virol. 70, 7894–7899. Google Scholar
  30. Heffernan, J.M., Wahl, L.M., 2005. Treatment interruptions and resistance: a review. In: Tan, W.-Y., Wu, H. (Eds.), Deterministic and Stochastic Models of AIDS and HIV with Intervention, pp. 423–456. World Scientific, Singapore. Google Scholar
  31. Hlavacek, W.S., Stilianakis, N.I., Notermans, D.W., Danner, S.A., Perelson, A.S., 2000. Influence of follicular dendritic cells on decay of HIV during antiretroviral therapy. Proc. Natl. Acad. Sci. USA 97, 10966–10971. CrossRefGoogle Scholar
  32. Hlavacek, W.S., Wofsy, C., Perelson, A.S., 1999. Dissociation of HIV-1 from follicular dendritic cells during HAART: mathematical analysis. Proc. Natl. Acad. Sci. USA 96, 14681–14686. CrossRefGoogle Scholar
  33. Hockett, R.D., Kilby, J.M., Derdeyn, C.A., Saag, M.S., Sillers, M., Squires, K., Chiz, S., Nowak, M.A., Shaw, G.M., Bucy, R.P., 1999. Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J. Exp. Med. 189, 1545–1554. CrossRefGoogle Scholar
  34. Huang, Y., Rosenkranz, S.L., Wu, H., 2003. Modeling HIV dynamics and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity. Math. Biosci. 184, 165–186. MATHCrossRefMathSciNetGoogle Scholar
  35. Kepler, T.B., Perelson, A.S., 1998. Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc. Natl. Acad. Sci. USA 95, 11514–11519. MATHCrossRefGoogle Scholar
  36. Kim, H., Perelson, A.S., 2006. Dynamic characteristics of HIV-1 reservoirs. Curr. Opin. HIV AIDS 1, 152–156. Google Scholar
  37. Kirschner, D.E., Webb, G.F., 1997. Understanding drug resistance for monotherapy treatment of HIV infection. Bull. Math. Biol. 59, 763–786. MATHCrossRefGoogle Scholar
  38. Larder, B.A., Darby, G., Richman, D.D., 1989. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243, 1731–1734. CrossRefGoogle Scholar
  39. Larder, B.A., Kemp, S.D., 1989. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246, 1155–1158. CrossRefGoogle Scholar
  40. Larder, B.A., 1996. Nucleosides and foscarnet-mechanisms. In: Richman, D.D., (Ed.), Antiviral Drug Resistance. Wiley, New York. Google Scholar
  41. Lori, F., Maserati, R., Foli, A., Seminari, E., Timpone, J., Lisziewicz, J., 2000. Structured treatment interruptions to control HIV-1 infection. Lancet 355, 287–288. CrossRefGoogle Scholar
  42. Mansky, L.M., Temin, H.M., 1995. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69, 5087–5094. Google Scholar
  43. Markowitz, M., Louie, M., Hurley, A., Sun, E., Di Mascio, M., Perelson, A.S., Ho, D.D., 2003. A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J. Virol. 77, 5037–5038. CrossRefGoogle Scholar
  44. McLean, A.R., Nowak, M.A., 1992. Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS 6, 71–79. CrossRefGoogle Scholar
  45. Miller, V., Sabin, C., Hertogs, K., Bloor, S., Martinez-Picado, J., D’Aquila, R., Larder, B., Lutz, T., Gute, P., Weidmann, E., Rabenau, H., Phillips, A., Staszewski, S., 2000. Virological and immunological effects of treatment interruptions in HIV-1 infected patients with treatment failure. AIDS 14, 2857–2867. CrossRefGoogle Scholar
  46. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A.S., Ho, D.D., 1998. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227. CrossRefGoogle Scholar
  47. Mugavero, M.J., Hicks, C.B., 2004. HIV resistance and the effectiveness of combination antiretroviral treatment. Drug Discov. Today Ther. Strateg. 1, 529–535. CrossRefGoogle Scholar
  48. Murray, J.M., Perelson, A.S., 2005. Human immunodeficiency virus: quasi-species and drug resistance. Multiscale Model. Simul. 3, 300–311. MATHCrossRefMathSciNetGoogle Scholar
  49. Nowak, M.A., Bonhoeffer, S., Shaw, G.M., May, R.M., 1997. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184, 203–217. CrossRefGoogle Scholar
  50. Nowak, M.A., May, R.M., 2000. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, London. MATHGoogle Scholar
  51. Ortiz, G.M., Wellons, M., Brancato, J., Vo, H.T., Zinn, R.L., Clarkson, D.E., Van Loon, K., Bonhoeffer, S., Miralles, G.D., Montefiori, D., Bartlett, J.A., Nixon, D.F., 2001. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proc. Natl. Acad. Sci. USA 98, 13288–13293. CrossRefGoogle Scholar
  52. Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., Ho, D.D., 1997. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191. CrossRefGoogle Scholar
  53. Perelson, A.S., Essunger, P., Ho, D.D., 1997. Dynamics of HIV-1 and CD4+ lymphocytes in vivo. AIDS 11(Suppl. A), S17–S24. Google Scholar
  54. Perelson, A.S., Kirschner, D.E., De Boer, R., 1993. Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114, 81–125. MATHCrossRefGoogle Scholar
  55. Perelson, A.S., Nelson, P.W., 2002. Modeling viral infections. Proc. Symp. Appl. Math. 59, 139–172. MathSciNetGoogle Scholar
  56. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D., 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586. CrossRefGoogle Scholar
  57. Phillips, A.N., Youle, M., Johnson, M., Loveday, C., 2001. Use of a stochastic model to develop understanding of the impact of different patterns of antiretroviral drug use on resistance development. AIDS 15, 2211–2220. CrossRefGoogle Scholar
  58. Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J.E., Markowitz, M., Moore, J.P., Perelson, A.S., Ho, D.D., 1999. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1785. CrossRefGoogle Scholar
  59. Ribeiro, R.M., Bonhoeffer, S., 2000. Production of resistant HIV mutants during antiretroviral therapy. Proc. Natl. Acad. Sci. USA 97, 7681–7686. MATHCrossRefGoogle Scholar
  60. Ribeiro, R.M., Bonhoeffer, S., Nowak, M.A., 1998. The frequency of resistant mutant virus before antiviral therapy. AIDS 12, 461–465. CrossRefGoogle Scholar
  61. Richman, D.D., 1992. Selection of zidovudine-resistant variants of human immunodeficiency virus by therapy. Curr. Top. Microbiol. Immunol. 176, 131–142. Google Scholar
  62. Richman, D.D., 1996. The implications of drug resistance for strategies of combination antiviral chemotherapy. Antivir. Res. 29, 31–33. CrossRefGoogle Scholar
  63. Richman, D.D., 2000. Principles of HIV resistance testing and overview of assay performance characteristics. Antivir. Ther. 5, 27–31. Google Scholar
  64. Richman, D.D., Havlir, D., Corbeil, J., Looney, D., Ignacio, C., Spector, S.A., Sullivan, J., Cheeseman, S., Barringer, K., Pauletti, D., et al., 1994. Nevirapine resistant mutations of human immunodeficiency virus type 1 selected during therapy. J. Virol. 68, 1660–1666. Google Scholar
  65. Roberts, D.E., Ribeiro, R.M., 2001. Comparison of different treatment regimens for the emergence of new resistance under therapy. J. Acquir. Immune Defic. Syndr. 27, 331–335. Google Scholar
  66. Sedaghat, A.R., Siliciano, R.F., 2004. Immunodeficiency in HIV-1 infection. In: Wormser, G. (Ed.), AIDS and Other Manifestations of HIV Infection, 4th edn., pp. 265–283. Elsevier, Amsterdam. Google Scholar
  67. Sethi, A.K., Celentano, D.D., Gange, S.J., Moore, R.D., Gallant, J.E., 2003. Association between adherence to antiretroviral therapy and human immunodeficiency virus drug resistance. Clin. Infect. Dis. 37, 1112–1118. CrossRefGoogle Scholar
  68. Shiri, T., Garira, W., Musekwa, S.D., 2005. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Math. Biosci. Eng. 2, 811–832. MATHMathSciNetGoogle Scholar
  69. Smith, R.J., 2006. Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance emerges? Proc. Roy. Soc. B 273, 617–624. Google Scholar
  70. Smith, R.J., Wahl, L.M., 2005. Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. Bull. Math. Biol. 67, 783–813. CrossRefMathSciNetGoogle Scholar
  71. Snedecor, S.J., 2003. Comparison of three kinetic models of HIV-1 infection: implications for optimization of treatment. J. Theor. Biol. 221, 519–541. CrossRefMathSciNetGoogle Scholar
  72. Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S., 2000. Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285–301. CrossRefGoogle Scholar
  73. St Clair, M.H., Martin, J.L., Tudor-Williams, G., Bach, M.C., Vavro, C.L., King, D.M., Kellam, P., Kemp, S.D., Larder, B.A., 1991. Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science 253, 1557–1559. CrossRefGoogle Scholar
  74. Stilianakis, N.I., Boucher, C.A., De Jong, M.D., Van Leeuwen, R., Schuurman, R., De Boer, R.J., 1997. Clinical data sets of human immunodeficiency virus type 1 reverse transcriptase-resistant mutants explained by a mathematical model. J. Virol. 71, 161–168. Google Scholar
  75. Tang, J.W., Pillay, D., 2004. Transmission of HIV-1 drug resistance. J. Clin. Virol. 30, 1–10. CrossRefGoogle Scholar
  76. Tesoriero, J., French, T., Weiss, L., Waters, M., Finkelstein, R., Agins, B., 2003. Stability of adherence to highly active antiretroviral therapy over time among clients enrolled in the treatment adherence demonstration project. J. Acquir. Immune Defic. Syndr. 33, 484–493. Google Scholar
  77. Tchetgen, E., Kaplan, E.H., Friedland, G.H., 2001. Public health consequences of screening patients for adherence to highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 26, 118–129. CrossRefGoogle Scholar
  78. Vergu, E., Mallet, A., Golmard, J.L., 2002. The role of resistance characteristics of viral strains in the prediction of the response to antiretroviral therapy in HIV infection. J. Acquir. Immune Defic. Syndr. 30, 263–270. Google Scholar
  79. Wahl, L.M., Nowak, M.A., 2000. Adherence and drug resistance: predictions for therapy outcome. Proc. Roy. Soc. Lond. B 267, 835–843. CrossRefGoogle Scholar
  80. Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., Shaw, G.M., 1995. Viral dynamics in human-immunodeficiency-virus type-1 infection. Nature 373, 117–122. CrossRefGoogle Scholar
  81. Wein, L.M., D’Amato, R.M., Perelson, A.S., 1998. Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. J. Theor. Biol. 192, 81–98. CrossRefGoogle Scholar
  82. Wodarz, D., Lloyd, A.L., 2004. Immune responses and the emergence of drug-resistant virus strains in vivo. Proc. Roy. Soc. Lond. B 271, 1101–1109. CrossRefGoogle Scholar
  83. Wu, H., Huang, Y., Acosta, E.P., Park, J.G., Yu, S., Rosenkranz, S.L., Kuritzkes, D.R., Eron, J.J., Perelson, A.S., Gerber, J.G., 2006. Pharmacodynamics of antiretroviral agents in HIV-1 infected patients: using viral dynamic models that incorporate drug susceptibility and adherence. J. Pharmacokinet. Pharmacodyn. 33, 399–419. CrossRefGoogle Scholar
  84. Wu, H., Huang, Y., Acosta, E.P., Rosenkranz, S.L., Kuritzkes, D.R., Eron, J.J., Perelson, A.S., Gerber, J.G., 2005. Modeling long-term HIV dynamics and antiretroviral response: effects of drug potency, pharmacokinetics, adherence, and drug resistance. J. Acquir. Immune Defic. Syndr. 39, 272–283. CrossRefGoogle Scholar
  85. Yuan Chen, H., Di Mascio, M., Perelson, A.S., Ho, D.D., Zhang, L., 2007. Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques, submitted. Google Scholar
  86. Zhang, L., Ramratnam, B., Tenner-Racz, K., He, Y., Vesanen, M., Lewin, S., Talal, A., Racz, P., Perelson, A.S., Korber, B.T., Markowitz, M., Ho, D.D., 1999. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. New Engl. J. Med. 340, 1605–1613. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Theoretical Biology and BiophysicsLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations