Advertisement

Bulletin of Mathematical Biology

, Volume 69, Issue 6, pp 1791–1813 | Cite as

Propagation of Fluctuations in Biochemical Systems, I: Linear SSC Networks

  • David F. Anderson
  • Jonathan C. Mattingly
  • H. Frederik Nijhout
  • Michael C. ReedEmail author
Original Article

Abstract

We investigate the propagation of random fluctuations through biochemical networks in which the number of molecules of each species is large enough so that the concentrations are well modeled by differential equations. We study the effect of network topology on the emergent properties of the reaction system by characterizing the behavior of variance as fluctuations propagate down chains and studying the effect of side chains and feedback loops. We also investigate the asymptotic behavior of the system as one reaction becomes fast relative to the others.

Keywords

Biochemical systems Fluctuations Stochastic differential equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.F., 2005. Stochastic perturbations of biochemical reaction systems, Duke University Thesis. Google Scholar
  2. Anderson, D.F., Mattingly, J.C., 2007. Propagation of fluctuations in biochemical systems II: nonlinear chains, submitted. Google Scholar
  3. Ball, K., Kurtz, T., Popovic, L., Rempala, G., 2006. Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab. 16(4), 1925–1961. CrossRefzbMATHMathSciNetGoogle Scholar
  4. Crabtree, B., Newsholme, E.A., 1985. A quantitative approach to metabolic control. In: Current Topics in Cellular Regulation, pp. 21–76. Academic, San Diego. Google Scholar
  5. Delbruck, M., 1940. Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–124. CrossRefGoogle Scholar
  6. Feinberg, M., 1979. Lectures on chemical reaction networks; delivered at the Mathematics Research Center, Univ. Wisconsin–Madison. Google Scholar
  7. Feinberg, M., 1987. Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems, Review article 25. Chem. Eng. Sci. 42, 2229–2268. CrossRefGoogle Scholar
  8. Gadgil, C., Othmer, H., Lee, C.H., 2005. A stochastic analysis of chemical first-order reaction networks. Bull. Math. Biol. 67, 901–946. CrossRefMathSciNetGoogle Scholar
  9. Gans, P.J. (1960). Open first-order stochastic processes. J. Chem. Phys. 33(3), 691. CrossRefMathSciNetGoogle Scholar
  10. Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434. CrossRefMathSciNetGoogle Scholar
  11. Heinrich, R., Rapoport, T.A., 1974. A linear steady-state treatment of enzymatic chains General properties control and effector strength. Eur. J. Biochem. 42, 89–95. CrossRefGoogle Scholar
  12. Horn, F.J.M., Jackson, R., 1972. General mass action kinetics. Arch. Rat. Mech. Anal. 47, 81–116. CrossRefMathSciNetGoogle Scholar
  13. Kacser, H., Burns, J.A., 1973. The control of flux. Symp. Soc. Exp. Biol., 27, 65–104. Google Scholar
  14. Kurtz, T., 1972. The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978. CrossRefGoogle Scholar
  15. Nijhout, F., Reed, M., Budu, P., Ulrich, C., 2004. A mathematical model of the folate cycle—new insights into folate homeostasis. J. Biol. Chem. 279(53), 55008–55016. CrossRefGoogle Scholar
  16. Nijhout, F., Reed, M., James, J., Anderson, D., Mattingly, J.C., Ulrich, C., 2006a. Long-range allosteric interactions between the folate and methionine cycles stabilize DNA methylation reaction rate. Epigenetics 1, 81–87. CrossRefGoogle Scholar
  17. Nijhout, H.F., Reed, M.C., Shane, B., Gregory, J.F., Ulrich, C.M., 2006b. In silico experimentation with a model of hepatic mitochondrial folate metabolism. Theor. Biol. Med. Model. 3, 40–56. CrossRefGoogle Scholar
  18. Oksendal, B., 2003. Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin. Google Scholar
  19. Reed, M., Nijhout, F., Sparks, R., Ulrich, C., 2004. A mathematical model of the methionine cycle. J. Theor. Biol. 226, 33–43. CrossRefMathSciNetGoogle Scholar
  20. Reed, M.C., Nijhout, H.F., Neuhouser, M.L., Gregory, J.F., III, Shane, B., James, S.J., Boynton, A., Ulrich, C.M., 2006. A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism. J. Nutr. 136, 2653–2661. Google Scholar
  21. Westerhoff, H.V., Chen, Y.-D., 1984. How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. Eur. J. Biochem. 142, 425–430. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • David F. Anderson
    • 1
  • Jonathan C. Mattingly
    • 1
  • H. Frederik Nijhout
    • 2
  • Michael C. Reed
    • 1
    Email author
  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations