Advertisement

Bulletin of Mathematical Biology

, Volume 69, Issue 3, pp 957–988 | Cite as

Evolution of Defence Portfolios in Exploiter–Victim Systems

  • N. F. BrittonEmail author
  • R. Planqué
  • N. R. Franks
Original Article

Abstract

Some organisms maintain a battery of defensive strategies against their exploiters (predators, parasites or parasitoids), while others fail to employ a defence that seems obvious. In this paper, we shall investigate the circumstances under which defence strategies might be expected to evolve. Brood parasites and their hosts provide our main motivation, and we shall discuss why the reed warbler Acrocephalus scirpaceus has evolved an egg-rejection but not a chick-rejection strategy as a defence against the common (Eurasian) cuckoo Cuculus canorus, while the superb fairy-wren Malurus cyaneus has evolved a chick-rejection but not an egg-rejection strategy as a defence against Horsfield's bronze-cuckoo Chrysococcyx basalis. We suggest that the answers lie in strategy-blocking, where one strategy (the blocking strategy) prevents the appearance of another (the blocked strategy) that would be adaptive in its absence. This may be common in exploiter–victim systems.

Keywords

Evolutionary ecology Host-parasite systems Brood parasites Defence strategies Rare-enemy effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akino, T., Knapp, J., Thomas, J., Elmes, G., 1999. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 266, 1419–1426.CrossRefGoogle Scholar
  2. Brooker, L., Brooker, M., 1998. Why do splendid fairy-wrens always accept cuckoo eggs? Behav. Ecol. 9, 420–424.CrossRefGoogle Scholar
  3. Brooker, L., Brooker, M., Brooker, A., 1990. An alternative population-genetic model for the evolution of egg mimesis and egg crypsis in cuckoos. J. Theor. Biol. 146, 123–143.Google Scholar
  4. Brooker, M., Brooker, L., 1989. The comparative breeding behaviour of two sympatric cuckoos, Horsfield's bronze-cuckoo Chrysococcus basalis and the shining bronze-cuckoo C. lucidus, in Western Australia: A new model for the evolution of egg morphology and host specificity in avian brood parasitism. Ibis 131, 528–547.Google Scholar
  5. Cramp, S., 1988. Handbook of the Birds of Europe, the Middle East and North Africa, vol. 5. Oxford University Press, New York.Google Scholar
  6. Cramp, S., Brooks, D., 1992. Handbook of the Birds of Europe, the Middle East and North Africa, vol. 6. Oxford University Press, New York.Google Scholar
  7. Davies, N., 2000. Cuckoos, Cowbirds and Other Cheats. T. & A.D. Poyser, London.Google Scholar
  8. Dawkins, R., 1982. The Extended Phenotype: The Long Reach of the Gene. Oxford University Press.Google Scholar
  9. Dawkins, R., Krebs, J., 1979. Arms races between and within species. Proc. R. Soc. Lond. B 205, 489–511.CrossRefGoogle Scholar
  10. Ehrlich, P., Raven, P., 1964. Butterflies and plants: A study in coevolution. Science 18, 586–608.Google Scholar
  11. Emlen, J., 1984. Population Biology: The Coevolution of Population Dynamics and Behaviour. Macmillan, New York.Google Scholar
  12. Flor, H., 1955. Host–parasite interaction in flax rust—its genetic and other implications. Phytopathology 45, 680–685.Google Scholar
  13. Flor, H., 1956. The complementary genic systems in flax and flax rust. Adv. Genet. 8, 29–54.CrossRefGoogle Scholar
  14. Futuyma, D., 1983. Evolutionary interactions among herbivorous insects and plants. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 207–231.Google Scholar
  15. Gallun, R., 1977. The genetic basis of hessian fly epidemics. Ann. N. Y. Acad. Sci. 287, 223–229.CrossRefGoogle Scholar
  16. Gilbert, L., 1971. Butterfly-plant coevolution: Has Passiflora adenopoda won the selectional race with heliconiine butterflies? Science 172, 585–586.CrossRefGoogle Scholar
  17. Gilbert, L., 1983. Coevolution and mimicry. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 263–281.Google Scholar
  18. Grim, T., Kleven, O., Mikulica, O., 2003. Nestling recognition without discrimination: A possible defence mechanism for hosts towards cuckoo parasitism? Proc. R. Soc. Lond. B Suppl. 270, S73–S75.CrossRefGoogle Scholar
  19. Hatchett, J., Gallun, R., 1970. Genetics of the ability of the hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann. Entomol. Soc. Am. 63, 1400–1407.Google Scholar
  20. Holmes, J., 1983. Evolutionary relationships between parasitic helminths and their hosts. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 161–185.Google Scholar
  21. Holt, R., 1977. Predation apparent competition and the structure of prey communities. Theor. Popul. Biol. 12, 197–229.CrossRefMathSciNetGoogle Scholar
  22. Janzen, D., 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20, 249–275.CrossRefGoogle Scholar
  23. Janzen, D., 1969. Seed-eaters versus seed size, number, toxicity and dispersal. Evolution 23, 1–27.CrossRefGoogle Scholar
  24. Kelly, C., 1987. A model to explore the rate of spread of mimicry and rejection in hypothetical populations of cuckoos and their hosts. J. Theor. Biol. 125, 283–299.CrossRefGoogle Scholar
  25. Kraaijeveld, A., Godfray, H., 1997. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280.CrossRefGoogle Scholar
  26. Langmore, N., Hunt, S., Kilner, R., 2003. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160.CrossRefGoogle Scholar
  27. Levin, B., Lenski, R., 1983. Coevolution in bacteria and their viruses and plasmids. In: Futuyma, D., Slatkin, M. (Eds.), Coevolution. Sinauer, Sunderland, MA, pp. 99–127.Google Scholar
  28. Levin, D., 1976. Alkaloid-bearing plants: An ecogeographic perspective. Am. Nat. 110, 157–182.CrossRefGoogle Scholar
  29. Lotem, A., 1993. Learning to recognize nestlings is maladaptive for cuckoo Cuculus canorus hosts. Nature 362, 743–745.CrossRefGoogle Scholar
  30. Marchalonis, J., 1977. Immunity in Evolution. Harvard University Press.Google Scholar
  31. May, R., Robinson, S., 1985. The population dynamics of avian brood parasitism. Am. Nat. 126, 475–494.CrossRefGoogle Scholar
  32. Nicholson, A., Bailey, V., 1935. The balance of animal populations, I. Proc. Zool. Soc. Lond. 1, 551–598.Google Scholar
  33. Planqué, R., Britton, N., Franks, N., Peletier, M., 2002. The adaptiveness of defence strategies against cuckoo parasitism. Bull. Math. Biol. 64, 1045–1068.CrossRefGoogle Scholar
  34. Pointrineau, K., Brown, S., Hochberg, M., 2003. Defence against multiple enemies. J. Evol. Biol. 16, 1319–1327.CrossRefGoogle Scholar
  35. Price, P., Bouton, C., Gross, P., McPheron, B., Thompson, J., Weiss, A., 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Ann. Rev. Ecol. Syst. 11, 41–65.CrossRefGoogle Scholar
  36. Rehr, S., Feeny, P., Janzen, D., 1973. Chemical defense in Central American non-ant acacias. J. Anim. Ecol. 42, 405–416.CrossRefGoogle Scholar
  37. Roitt, I., Delves, P., 2001. Essential Immunology, 10th edition. Blackwell Science, UK.Google Scholar
  38. Rothstein, S., 1975. Evolutionary rates and host defences against avian brood parasitism. Am. Nat. 109, 161–176.CrossRefGoogle Scholar
  39. Sabelis, M., van Baalen, M., Pels, B., Egas, M., Janssen, A., 2002. Evolution of exploitation and defense in tritrophic interactions. In: Dieckmann, U., Metz, J., Sabelis, M., Sigmund, K. (Eds.), Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, pp. 297–321.Google Scholar
  40. Salt, G., 1970. The Cellular Defence Reactions of Insects. Cambridge University Press.Google Scholar
  41. Sasaki, A., Godfray, H., 1999. A model for the coevolution of resistance and virulence in coupled host–parasitoid interactions. Proc. R. Soc. Lond. B 266, 455–463.CrossRefGoogle Scholar
  42. Sih, A., Englund, G., Wooster, D., 1998. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355.CrossRefGoogle Scholar
  43. Silvertown, J., Lovett Doust, J., 1993. Introduction to Plant Population Biology. Blackwell Science, Oxford.Google Scholar
  44. Skellam, J., 1951. Random dispersal in theoretical populations. Biometrika 38, 196–218.zbMATHMathSciNetGoogle Scholar
  45. Smith, N., 1968. The advantage of being parasitised. Nature 219, 690–694.CrossRefGoogle Scholar
  46. Smith, N., 1979. Alternate responses by hosts to parasites which may be helpful or harmful. In: Nickol, B. (Ed.), Host–Parasite Interfaces. Academic Press, New York, pp. 7–15.Google Scholar
  47. Takasu, F., 1998. Why do all host species not show defense against avian brood parasitism: Evolutionary lag or equilibrium? Am. Nat. 151, 193–205.CrossRefGoogle Scholar
  48. Takasu, F., Kawasaki, K., Nakamura, H., Cohen, J., Shigesada, N., 1993. Modeling the population dynamics of a cuckoo–host association and the evolution of host defences. Am. Nat. 142, 819–839.CrossRefGoogle Scholar
  49. Thomas, J., Knapp, J., Akino, T., Gerty, S., Wakamura, S., Simcox, D., Wardlaw, J., Elmes, G., 2002. Insect communication: Parasitoid secretions provoke ant warfare—subterfuge used by a rare wasp may be the key to an alternative type of pest control. Nature 417, 505–506.CrossRefGoogle Scholar
  50. Turlings, T., Loughrin, J., McCall, P., Röse, U., Lewis, W., 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U. S. A. 92, 4169–4174.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of BathBathUK
  2. 2.Department of MathematicsVrije UniversiteitAmsterdamNetherlands

Personalised recommendations