Bulletin of Mathematical Biology

, Volume 69, Issue 2, pp 659–676 | Cite as

Spatial Patterns of Prisoner’s Dilemma Game in Metapopulations

Original Article

Abstract

Because to defect is the evolutionary stable strategy in the prisoner’s dilemma game (PDG), understanding the mechanism generating and maintaining cooperation in PDG, i.e. the paradox of cooperation, has intrinsic significance for understanding social altruism behaviors. Spatial structure serves as the key to this dilemma. Here, we build the model of spatial PDG under a metapopulation framework: the sub-populations of cooperators and defectors obey the rules in spatial PDG as well as the colonization–extinction process of metapopulations. Using the mean-field approximation and the pair approximation, we obtain the differential equations for the dynamics of occupancy and spatial correlation. Cellular automaton is also built to simulate the spatiotemporal dynamics of the spatial PDG in metapopulations. Join-count statistics are used to measure the spatial correlation as well as the spatial association of the metapopulation. Simulation results show that the distribution is self-organized and that it converges to a static boundary due to the boycotting of cooperators to defectors. Metapopulations can survive even when the colonization rate is lower than the extinction rate due to the compensation of cooperation rewards for extinction debt. With a change of parameters in the model, a metapopulation can consist of pure cooperators, pure defectors, or cooperator–defector coexistence. The necessary condition of cooperation evolution is the local colonization of a metapopulation. The spatial correlation between the cooperators tends to be weaker with the increase in the temptation to defect and the habitat connectivity; yet the spatial correlation between defectors becomes stronger. The relationship between spatial structure and the colonization rate is complicated, especially for cooperators. The metapopulation may undergo a temporary period of prosperity just before the extinction, even while the colonization rate is declining.

Keywords

Cooperation Game theory Join-count statistics Pair approximation Spatial correlation and association 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, R., Hamilton, W.D., 1981. The evolution of cooperation. Science 211, 1390–1396.CrossRefMathSciNetGoogle Scholar
  2. Brown, J.H., Mehlman, D.W., Stevens, G.C., 1995. Spatial variation in abundance. Ecology 76, 2028–2043.CrossRefGoogle Scholar
  3. Channell, R., Lomolino, M.V., 2000. Dynamic biogeography and conservation of endangered species. Nature 403, 84–86.CrossRefGoogle Scholar
  4. Cole, L.C., 1957. The measurement of partial interspecific association. Ecology 38, 226–233.CrossRefGoogle Scholar
  5. Dieckmann, U., Law, R., Metz, J.A.J., 2000. The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, New York.Google Scholar
  6. Durrett, R., Levin, S., 1994. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394.MATHCrossRefGoogle Scholar
  7. Epstein, J.M., Axtell, R., 1996. Growing Artificial Societies. The Brookings Institution Press, Boston.Google Scholar
  8. Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon, Oxford.MATHGoogle Scholar
  9. Fortin, M.J., Dale, M.R.T., ver Hoef, J., 2002. Spatial analysis in ecology. In: El-Shaarawi, A.H., Piegorsch, W.W. (Eds.), Encyclopedia of Environmentrics. Wiley, New York, pp. 2051–2058.Google Scholar
  10. Greig-Smith, P., 1964. Quantitative Plant Ecology, 2nd edn. Butterworths, London.Google Scholar
  11. Hamilton, W.D., 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–52.CrossRefGoogle Scholar
  12. Hanski, I., 1998. Metapopulation dynamics. Nature 396, 41–49.CrossRefGoogle Scholar
  13. Hanski, I., 1999. Metapopulation Ecology. Oxford University Press, Oxford.Google Scholar
  14. Hanski, I., Gaggiotti, O.E., 2004. Ecology, Genetics, and Evolution of Metapopulations. Elsevier, Amsterdam.Google Scholar
  15. Hanski, I., Zhang, D.Y., 1993. Migration, metapopulation dynamics and fugitive co-existence. J. Theor. Biol. 163, 491–504.CrossRefGoogle Scholar
  16. Harada, Y., Ezoe, H., Iwasa, Y., Matsuda, H., Sato, K., 1994. Population persistence and spatially limited social interaction. Theor. Popul. Biol. 48, 65–91.CrossRefGoogle Scholar
  17. Harada, Y., Iwasa, Y., 1994. Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. 36, 237–249.CrossRefGoogle Scholar
  18. Harmer, G.P., Abbott, D., 1999. Losing strategies can win by Parrondo's paradox. Nature 402, 864.CrossRefGoogle Scholar
  19. Harms, W., 1999. Biological altruism in hostile environments. Complexity 5(2), 23–28.CrossRefGoogle Scholar
  20. Hilborn, R.C., 2000. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York.MATHGoogle Scholar
  21. Hoffmann, R., 2000. Twenty Years On: The Evolution of Cooperation Revisited. J. Artif. Soc. Soc. Simul. 3(2). http://www.soc.surrey.ac.uk/JASSS/3/2/forum/1.htmlGoogle Scholar
  22. Huberman, B.A., Glance, N.S., 1993. Evolutionary games and computer simulations. Proc. Natl. Acad. Sci. USA 90, 7716–7718.MATHCrossRefGoogle Scholar
  23. Hui, C., 2004. Spatial chaos of metapopulation incurred by Allee effect, overcrowding effect and predation effect. Acta Bot. Boreal.-Occident. Sin. 24, 370–383.Google Scholar
  24. Hui, C., Li, Z., 2003. Dynamical complexity and metapopulation persistence. Ecol. Model. 164, 201–209.CrossRefGoogle Scholar
  25. Hui, C., Li, Z., 2004. Distribution patterns of metapopulation determined by Allee effects. Popul. Ecol. 46, 55–63.CrossRefGoogle Scholar
  26. Hui, C., Li, Z., Yue, D.X., 2004. Metapopulation dynamics and distribution, and environmental heterogeneity induced by niche construction. Ecol. Model. 177, 107–118.CrossRefGoogle Scholar
  27. Hui, C., McGeoch, M.A., Warren, M., 2006. A spatially explicit approach to estimating species occupancy and spatial correlation. J. Anim. Ecol. 75, 140–147.CrossRefGoogle Scholar
  28. Hui, C., Yue, D., 2005. Niche construction and polymorphism maintenance in metapopulations. Ecol. Res. 20, 115–119.CrossRefGoogle Scholar
  29. Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137–147.CrossRefGoogle Scholar
  30. Huxel, G.R., Hastings, A., 1999. Habitat loss, fragmentation, and restoration. Restor. Ecol. 7, 309–315.CrossRefGoogle Scholar
  31. Iwasa, Y., Sato, K, Nakashima, S. 1991. Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. J. Theor. Biol. 152, 143–158.CrossRefGoogle Scholar
  32. Johnson, C.N., 1998. Species extinction and the relationships between distribution and abundance. Nature 394, 272–274.CrossRefGoogle Scholar
  33. Katori, M., Konno, N., 1991. Upper bounds for survival probability of the contact process. J. Stat. Phys. 63, 115–130.CrossRefMathSciNetGoogle Scholar
  34. Kermer, J.E., Marquet, P.A., Johnson, A.R., 1998. Pattern formation in a patch occupancy metapopulation model: A cellular automata approach. J. Theor. Biol. 194, 79–90.CrossRefGoogle Scholar
  35. Levin, S.A., Grenfell, B., Hastings, A., Perelson, A.S., 1997. Mathematical and computational challenges in population biology and ecosystems sciences. Science 275, 334–343.CrossRefGoogle Scholar
  36. Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entom. Soc. Am. 15, 237–240.Google Scholar
  37. Lindgren, K., Nordahl, M.G., 1994. Cooperation and community structure in artificial ecosystems. Artif. Life 1, 15–37.CrossRefGoogle Scholar
  38. Matsuda, H., Ogita, A., Sasaki, A., Sato, K., 1992. Statistical mechanics of population: the lotka-volterra model. Prog. Theor. Phys. 88, 1035–1049.CrossRefGoogle Scholar
  39. McGeoch, M.A., Chown, S.L., 1998. Scaling up the value of bioindicators. Trends Ecol. Evol. 13, 46–47.CrossRefGoogle Scholar
  40. McGlade, J.M., 1999. Advanced Ecological Theory: Principles and Applications. Blackwell, Oxford.Google Scholar
  41. Nisbet, R.M., Gurney, W.S.C., 1982. Modelling Fluctuating Populations. Wiley, New York.MATHGoogle Scholar
  42. Nowak, M.A., Bonhoeffer, S., May, R.M., 1994. Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA 91, 4877–4881.MATHCrossRefGoogle Scholar
  43. Nowak, M.A., May, R.M., 1992. Evolutionary games and spatial chaos. Nature 359, 826–829.CrossRefGoogle Scholar
  44. Nowak, M.A., Sigmund, K., 1993. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner's dilemma game. Nature 364, 56–58.CrossRefGoogle Scholar
  45. Nowak, M.A., Sigmund, K., 2004. Evolutionary dynamics of biological games. Science 303, 793–799.CrossRefGoogle Scholar
  46. Perry, J.N., Liebhold, A.M., Rosenberg, M.S., Dungan, J.L., Miriti, M., Jakomulska, A., Citron-Pousty, S., 2002. Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 25, 578–600.CrossRefGoogle Scholar
  47. Pielou, E.C., 1972. Measurement of structure in animal communities. In: Wiens, J.A. (Ed.), Ecosystem Structure and Function. Oregon State University Press, Corvallis, pp. 113–136.Google Scholar
  48. Rodriguez, A., Delibes, M., 2002. Internal structure and patterns of contration I the geographic range of the Iberian Lynx. Ecography 25, 314–328.CrossRefGoogle Scholar
  49. Sato, K., Iwasa, Y., 2000. Pair approximation for lattice-based ecological models. In: Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge, pp. 341–358.Google Scholar
  50. Sayama, H., 2004. Self-protection and diversity in self-replicating cellular automata. Artif. Life 10, 83–98.CrossRefGoogle Scholar
  51. Schonfisch, B., 1997. Anisotropy in cellular automata. Biosystems 41, 29–41.CrossRefGoogle Scholar
  52. Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press, Oxford.Google Scholar
  53. Tainaka, K., 1993. Paradoxical effect in a three-candidate voter model. Phys. Lett. A 176, 303–306.CrossRefGoogle Scholar
  54. Tilman, D., 1994. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16.CrossRefGoogle Scholar
  55. Tilman, D., Kareiva, P., 1997. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, Princeton.Google Scholar
  56. Trivers, R., 1971. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57.CrossRefGoogle Scholar
  57. Upton, G.J.G., Fingleton, B., 1985. Spatial Data Analysis by Example, vol. 1: Point Pattern and Quantitative Data. Wiley, New York.Google Scholar
  58. Wilkinson, G.S., 1984. Reciprocal food sharing in the vampire bat. Nature 308, 181–184.CrossRefGoogle Scholar
  59. Williams, G.C., 1966. Adaptation and Natural Selection. Princeton University Press, Princeton.Google Scholar
  60. Wilson, D.S., Sober, E., 1994. Re-introducing group selection to human behavioral sciences. Behav. Brain Sci. 17, 585–654.CrossRefGoogle Scholar
  61. Wilson, R.J., Thomas, C.D., Fox, R., Roy, D.B., Kunin, W.E., 2004. Spatial patterns in species distributions reveal biodiversity change. Nature 432, 393–396.CrossRefGoogle Scholar
  62. Zhang, F., Hui, C., Han, X., Li, Z., 2005. Evolution of cooperation in patchy habitat under patch decay and isolation. Ecol. Res. 20, 461–469.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  1. 1.Spatial, Physiological and Conservation Ecology Group, Department of EntomologyUniversity of StellenboschMatielandSouth Africa
  2. 2.Center of Invasion Biology, Department of EntomologyUniversity of StellenboschMatielandSouth Africa

Personalised recommendations