Bulletin of Mathematical Biology

, Volume 69, Issue 2, pp 635–657 | Cite as

Information Theory in Living Systems, Methods, Applications, and Challenges

Original Article


Living systems are distinguished in nature by their ability to maintain stable, ordered states far from equilibrium. This is despite constant buffeting by thermodynamic forces that, if unopposed, will inevitably increase disorder. Cells maintain a steep transmembrane entropy gradient by continuous application of information that permits cellular components to carry out highly specific tasks that import energy and export entropy. Thus, the study of information storage, flow and utilization is critical for understanding first principles that govern the dynamics of life. Initial biological applications of information theory (IT) used Shannon’s methods to measure the information content in strings of monomers such as genes, RNA, and proteins. Recent work has used bioinformatic and dynamical systems to provide remarkable insights into the topology and dynamics of intracellular information networks. Novel applications of Fisher-, Shannon-, and Kullback–Leibler informations are promoting increased understanding of the mechanisms by which genetic information is converted to work and order. Insights into evolution may be gained by analysis of the the fitness contributions from specific segments of genetic information as well as the optimization process in which the fitness are constrained by the substrate cost for its storage and utilization. Recent IT applications have recognized the possible role of nontraditional information storage structures including lipids and ion gradients as well as information transmission by molecular flux across cell membranes. Many fascinating challenges remain, including defining the intercellular information dynamics of multicellular organisms and the role of disordered information storage and flow in disease.


Information theory Entropy Shannon information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adami, C., Ofria, C., Collier, T.C., 2000. Evolution of biological complexity. Proc. Natl. Acad. Sci. 97, 4463–4468.CrossRefGoogle Scholar
  2. Albert, R., Barabasi, A.-L., 2002. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97.CrossRefMathSciNetGoogle Scholar
  3. Albert, R., Jeong, H., Barabasi, A.-L., 2000. Error and attack tolerance of complex networks. Nature 406, 378–382.CrossRefGoogle Scholar
  4. Alberts, B., 1998. The cell as a collection of protein machines:preparing the next generation of molecular biologists. Cell 92, 291–294.CrossRefGoogle Scholar
  5. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., 1994. Molecular Biology of the Cell. Garland Publishing Inc., New York.Google Scholar
  6. Brooks, D.R., Leblond, P.H., Cumming, D.D., 1984. Information and entropy in a simple evolution model. J. Theor. Biol. 109, 77–93.MathSciNetGoogle Scholar
  7. Callaway, D.S., Hopcraft, J.E., Kleinberg, J.M., Newman, M.E., Strogatz, S.H., 2000. Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471.CrossRefGoogle Scholar
  8. Chamaraux, F., Fache, S., Bruckert, F., Fourcade, B., 2005. Kinetics of cell spreading. Phys. Rev. Lett. 94, 158102–158110.CrossRefGoogle Scholar
  9. Dehnert, M., Helm, W.E., Hutt, M.-T., 2005. Information theory reveals large-scale synchronization of statistical correlations in eukaryote genomes. Gene 345, 81–90.CrossRefGoogle Scholar
  10. Dockery, J.D., Keener, J.P., 2001. A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 63, 95–116.CrossRefGoogle Scholar
  11. Ebeling, W., Frommel, C., 1998. Entropy and predictability of information carriers. Biosystem 46, 47–55.CrossRefGoogle Scholar
  12. Eigen, M., Schuster, P., 1977. The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64, 541–565.CrossRefGoogle Scholar
  13. Fath, B.D., Cabezas, H., Pawlowski, W., 2003. Regime changes in ecological systems: an information theory approach. J. Theor. Biol. 222, 517–530.MathSciNetGoogle Scholar
  14. Fisher, R.A., 1925. Theory of statistical estimation. Proc. Cambridge Phil. Soc. 22, 700–725.MATHCrossRefGoogle Scholar
  15. Fisher, R.A., 1959. Statistical methods and scientific inference, 2nd edition. Oliver and Boyd, London, pp. 1–112Google Scholar
  16. Franca-Koh, J., Devreotes, P.N., 2004. Moving forward: Mechanisms of chemoattractant gradient sensing. Physiology 19, 300–308.CrossRefGoogle Scholar
  17. Frieden, B.R., 2001. Probability, Statistical Optics and Data Testing, 3rd edition. Springer-Verlag, Berlin.MATHGoogle Scholar
  18. Frieden, B.R., 2004. Science from Fisher Information, 2nd edition. Cambridge University Press, Cambridge, U.K.MATHGoogle Scholar
  19. Garcia, S.B., Novelli, M., Wright, N.A., 2000. The clonal origin and clonal evolution of epithelial tumors. Int. J. Exp. Path. 81, 89–116.CrossRefGoogle Scholar
  20. Gatenby, R.A., Frieden, B.R., 2002. Application of information theory and extreme physical information to carcinogenesis. Cancer Res. 62, 3675–3684.Google Scholar
  21. Gatenby, R.A., Frieden, B.R., 2005a. Information dynamics in carcinogenesis and tumor growth. Mutat. Res. 568(2), 259–227.Google Scholar
  22. Gatenby, R.A., Frieden, B.R., 2005b. The role of non-genomic information in maintaining thermodynamic stability in living systems. Math. Biosci. Eng. 2(1), 43–51.MATHGoogle Scholar
  23. Gilbert, E.N., 1966. Information theory after 18 years. Science 152, 320–326.CrossRefGoogle Scholar
  24. Grunenfelder, B., Winzeler, E.A., 2002. Treasures and traps in genome-wide data sets: Case examples from yeast. Nat. Rev. Genet. 3, 653–661.CrossRefGoogle Scholar
  25. Han, J-D., et al., 2004. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93.CrossRefGoogle Scholar
  26. Hariri, A., Weber, B., Olmsted, J., 1990. On the validity of Shannon-information calculations for molecular biological sequences. J. Theor. Biol. 147, 235–254.Google Scholar
  27. Jeong, H., et al., 2001. Lethality and centrality in protein networks. Nature 411, 41–45.CrossRefMathSciNetGoogle Scholar
  28. Jeong, H., et al., 2000. The large-scale organization of metabolic networks. Nature 407, 651–654.CrossRefGoogle Scholar
  29. Johnson, H.A., 1970. Information theory in biology after 18 years. Science 168, 1545–1550.CrossRefGoogle Scholar
  30. Kaiser, D., 2001. Building a multicellular organism. Annu. Rev. Genet. 35, 103–123.CrossRefGoogle Scholar
  31. Keener, J.P., 2005. A model for length control of flagellar hooks of Salmonella typhimurium. J. Theor. Biol. 234, 263–275.CrossRefMathSciNetGoogle Scholar
  32. Kendal, W.S., 1990. The use of information theory to analyze genomic changes in neoplasia. Math. Biosc. 100, 143–159.MATHCrossRefGoogle Scholar
  33. Kullback, S., 1959 Information Theory and Statistics. Wiley, New York.MATHGoogle Scholar
  34. Lahoz-Beltra, R., 1997. Molecular automata assembly: Principles and simulation of bacterial membrane construction. Biosys. 44, 209–229.CrossRefGoogle Scholar
  35. Li, S., Armstrong, C.M., Bertin, N., et al., 2004. A map of the interactome network of the metazoan C. elegans. Nature 303, 540–543.Google Scholar
  36. Loeb, L.A., 2001. A mutator phenotype in cancer. Cancer Res. 61, 3230–3239.Google Scholar
  37. Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A., Gerstein, M., 2004. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312.CrossRefGoogle Scholar
  38. Maxwell, J.C., 1880. Theory of Heat, 6th edition. D. Appleton Co., New York.Google Scholar
  39. Morowitz, H.J., 1955. Some order-disorder considerations in living systems. Bull. Math. Biophys. 17, 81–86.CrossRefGoogle Scholar
  40. Morris, J.A., 2001. Information theory: A guide to the investigation of disease. J. Biosci. 26, 15–23.Google Scholar
  41. Pierce, J.R., 1980. Information theory and physics, in introduction to information theory. symbols, signals, and noise. 2nd edition. Dover Publications, New York, pp. 184–207.Google Scholar
  42. Prigogine, I., 1965. Steady states and entropy production. Physica 31, 719–724.MATHCrossRefGoogle Scholar
  43. Reza, F.M., 1961. An Introduction to Information Theory. McGraw-Hill, New York.Google Scholar
  44. Schneider, T.D., 2003. Evolution of biological information. Nucleic Acids Res. 28, 2794–2785.CrossRefGoogle Scholar
  45. Schneider, T.D., 1997. Information content of individual genetic sequences. J. Theor. Biol. 189, 427–441.CrossRefGoogle Scholar
  46. Schneider, T.D., 1991a. Theory of molecular machines. I. Channel capacity of molecular machines. J. Theor. Biol. 148, 83–123.CrossRefGoogle Scholar
  47. Schneider, T.D., 1991b. Theory of molecular machines II. Energy dissipation from molecular machines. J. Theor. Biol. 148, 125–137.CrossRefGoogle Scholar
  48. Schrodinger, E., 1944. What is Life? Cambridge University Press, Cambridge, U.K.Google Scholar
  49. Segre, D., Ben-Eli, D., Lancet, D., 2000. Compositional genomes: Prebiotic information transfer in mutually catalytic non-covalent assemblies. Proc. Natl Acad. Sci. 97, 4112–4117.CrossRefGoogle Scholar
  50. Shannon, C.E., 1948. A mathematical theory of communication. Bell System Tech. J. 27, 379–623.MATHMathSciNetGoogle Scholar
  51. Sole, R.V., Deisboeck, T.S., 2004. An error catastrophe in cancer? J. Theor. Biol. 228, 47–54.CrossRefGoogle Scholar
  52. Strait, B.J., Dewey, T.G., 1996. The Shannon information entropy of protein sequences. J. Biophys. 71, 148–155.CrossRefGoogle Scholar
  53. Surette, M.G., Miller, M.B., Bassler, B.L., 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad Sci. 96, 1639–1644.CrossRefGoogle Scholar
  54. Szilard, L., 1929. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Z. Physik. 53, 840–848.CrossRefGoogle Scholar
  55. Taga, M.E., Bassler, B.L., 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. 100, 14549–14554.CrossRefGoogle Scholar
  56. Trincher, K.S., 1965. Biology and Information: Elements of Biological Thermodynamics. Consultants Bureau, New York.Google Scholar
  57. Ulanowicz, R.E., 2001. Information theory in ecology. Comput. Chem. 25, 393–399.CrossRefGoogle Scholar
  58. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P., 2002. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403.CrossRefGoogle Scholar
  59. Wagner, A., Fell, D., 2000. Technical Report No. 00-07-041. Santa Fe Inst.Google Scholar
  60. Wallace, R., Wallace, R.G., 1998. Information theory, scaling laws and the thermodynamics of evolution. J. Theor. Biol. 192, 545–559.CrossRefGoogle Scholar
  61. Weiss, O., Jimenez-Montano, M.A., Herzel, H., 2000. Information content of protein sequence. J. Theor. Biol. 206, 379–386.CrossRefGoogle Scholar
  62. Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H., 2004. Network motifs in integrated cellular networks of transcription and protein-protein interactions. Proc. Nat. Acad. Sci. 101, 5934–5939.CrossRefGoogle Scholar
  63. Yook, S-H., Oltvai, Z.N., Barabasi, A.-L., 2004. Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942.CrossRefGoogle Scholar
  64. Zhang, L.-H., Dong, Y.-H., 2004. Quorum sensing and signal interference:diverse implications. Mol. Micro. 53, 1563–1571.CrossRefGoogle Scholar
  65. Zeeberg, B., 2002. Shannon information theoretic computation of synonymous codon usage biases in coding regions of human and mouse genomes. Genome. Res. 1944–1955.Google Scholar
  66. Zhao, L., Park, K., Lai, Y.-C., 2004. Attack vulnerability of scale-free networks due to cascading breakdown. Phys. Rev. E. 70, 1–4.Google Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  1. 1.Department of RadiologyUniversity Medical Center, University of ArizonaTucsonUSA
  2. 2.Department of Applied MathematicsUniversity of ArizonaTucsonUSA
  3. 3.Department of Optical ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations