Dynamic Model of the Process of Protein Synthesis in Eukaryotic Cells

Original Article

Abstract

Protein synthesis is the final step of gene expression in all cells. In order to understand the regulation of this process, it is important to have an accurate model that incorporates the regulatory steps. The model presented in this paper is composed of set of differential equations which describe the dynamics of the initiation process and its control, as well as peptide elongation, starting with the amino acids available for peptide creation. A novel approach for modeling the elongation process permits useful prediction of protein production and consumption of energy and amino acids, as well as ribosome loading rate and ribosome spacing on the mRNA.

Keywords

Protein synthesis Initiation factors Initiation control Elongation eIF2 eIF4 Charged-tRNA Amino acid consumption Differential equations of protein synthesis Dynamic model 

References

  1. Arava, Y., Wang, Y., Storey, J., Liu, C., Brown, P., Herschlag, D., 2003. Genome-wide analysis of mRNA translation profiles in saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 100(7), 3889–3894.CrossRefGoogle Scholar
  2. Drew, D.A., 2001. A mathematical model for prokaryotic protein synthesis. Bull. Math. Biol. (63), 329–351.CrossRefGoogle Scholar
  3. Gingras, A.C., Raught, B., Sonenberg, N., 1999. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963.CrossRefGoogle Scholar
  4. Hinnebusch, A.G., 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In: Sonenberg, N., Hershey, J., Mathews, M.B. (Eds.), Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press, New York, pp. 185–243 (Chapter 5).Google Scholar
  5. Hinnebusch, A.G., 2004. Study of translational control in eukaryotic gene expression using yeast. Ann. N.Y. Acad. Sci. 1038, 60–74.CrossRefGoogle Scholar
  6. Holcik, M., Sonenberg, N., 2005. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6(4), 318–327.CrossRefGoogle Scholar
  7. Khalil, H.K., 2002. Nonlinear Systems, 3rd edition. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
  8. Kimball, S.R., Jefferson, L., 2000. Regulation of translation initiation in mammalian cells by amino acids. In: Sonenberg, N., Hershey, J., Mathews, M.B. (Eds.), Translational Control of Gene Expression. Translational Control. Cold Spring Harbor Laboratory Press, New York, pp. 561–579 (Chapter 16).Google Scholar
  9. Kozak, M., October 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. The Journal of Biological Chemistry 266(30), 19867–19870.Google Scholar
  10. Lewis, J., Ames, B., 1972. Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNA his charged in vivo and its relation to the repression of the histidine operon. Journal of Molecular Biology 66(1), 131–142.CrossRefGoogle Scholar
  11. MacKay, Li, Flory, Turcott, Law, Serikawa, Xu, Lee, Goodlett, Aebersold, Zhao, and Morris]MolCellProteomics:3:478 MacKay, V.L., Li, X., Flory, M.R., Turcott, E., Law, G.L., Serikawa, K.A., Xu, X.L., Lee, H., Goodlett, D.R., Aebersold, R., Zhao, L.P., Morris, D.R., 2004. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: Response of yeast to mating pheromone. Mol. Cell Proteomics 3(5), 478–489.CrossRefGoogle Scholar
  12. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H., 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. (288), 911–940.CrossRefGoogle Scholar
  13. Merrick, W.C., Hershey, J.W., 1996. The pathway and mechanism of eukaryotic protein synthesis. In: Hershey, J.W., Mathews, M.B., Sonenberg, N. (Eds.), Translational Control, vol. 1 of Translational Control. Cold Spring Harbor Laboratory Press, New York, pp. 31–69 (Chapter 2).Google Scholar
  14. Merrick, W.C., Nyborg, J., 2000. The protein biosynthesis elongation cycle. In: Sonenberg, N., Hershey, J., Mathews, M.B. (Eds.), Translational Control of Gene Expresison. Cold Spring Harbor Laboratory Press, New York, pp. 89–125 (Chapter 3).Google Scholar
  15. Mikami, S., Masutani, M., Sonenberg, N., Yokoyama, S., Imataka, H., April 2006. An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expression and Purification 46(2), 348–357.CrossRefGoogle Scholar
  16. Raught, B., Gingras, A.C., Sonenberg, N., 2000. Regulation of ribosomal recruitment in eukaryotes. In: Sonenberg, N., Hershey, J., Mathews, M.B. (Eds.), Translational Control of Gene Expresison. Cold Spring Harbor Laboratory Press, New York, pp. 245–293 (Chapter 6).Google Scholar
  17. Rowlands, A.G., Panniers, R., Henshaw, E.C., 1988. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J. Biol. Chem. 263(12), 5526–5533.Google Scholar
  18. Scheuner, D., Mierde, D., Song, B., Flamez, D., Creemers, J., Tsukamoto, K., Ribick, M., Schuit, F., Kaufman, R., Jun 2005. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Natural Medicine 11(7), 757–64.CrossRefGoogle Scholar
  19. Surdin-Kerjan, Y., Cherest, H., Robichon-Szulmajster, H., 1973. Relationship between methionyl transfer ribonucleic acid cellular content and synthesis of methionine enzyme in Saccharomyces cerevisiae. J. Bacteriol. 113, 1156–1160.Google Scholar
  20. Trachsel, H., 1996. Binding of Initiator Methionyl-t RNA to Ribosomes. In: Hershey, J.W., Mathews, M.B., Sonenberg, N. (Eds.), Translational Control. Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press, New York, pp. 113–138 (Chapter 4).Google Scholar
  21. Voet, D., 2004. Biochemistry, 3rd edition. John Wiley & sons, Inc., New York.Google Scholar
  22. Wong, K.K.Y., Bouwer, H.G.A., Freitag, N.E., 2004. Evidence implicating the 5’ untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell. Microbiol. 6(2), 155–166.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department for Engineering CyberneticsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Biochemistry DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations