Bulletin of Mathematical Biology

, Volume 69, Issue 1, pp 265–288 | Cite as

Modeling Tick-Borne Disease: A Metapopulation Model

  • Holly D. Gaff
  • Louis J. Gross
Original Article


Recent increases in reported outbreaks of tick-borne diseases have led to increased interest in understanding and controlling epidemics involving these transmission vectors. Mathematical disease models typically assume constant population size and spatial homogeneity. For tick-borne diseases, these assumptions are not always valid. The disease model presented here incorporates non-constant population sizes and spatial heterogeneity utilizing a system of differential equations that may be applied to a variety of spatial patches. We present analytical results for the one patch version and find parameter restrictions under which the populations and infected densities reach equilibrium. We then numerically explore disease dynamics when parameters are allowed to vary spatially and temporally and consider the effectiveness of various tick-control strategies.


Tick-borne disease Ehrlichiosis Epidemiology Vector-borne disease model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, B.E., Sims, K.G., Olson, J.G., Childs, J.E., Piesman, J.F., Happ, C.M., Maupin, G.O., Johnson, B.J.B., 1993. Amblyomma americanum: a potential vector of human ehrlichiosis. Am J. Trop. Med. Hyg. 49, 239–244.Google Scholar
  2. Anderson, B.E., Sumner, J.W., Dawson, J.E., Tzianabos, T., Greene, C.R., Olson, J.G., Fishbein, D.B., Olsen-Rasmussen, M., Holloway, B.P., George, E.H., Azad, A.F., 1992. Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J. Clin. Microbiol. 30, 775–780.Google Scholar
  3. Awerbuch, T.E., Sandberg, S., 1995. Trends and oscillations in tick population dynamics. J. Theor. Biol. 175, 511–516.CrossRefGoogle Scholar
  4. Barbour, A.G., 1996. Lyme Disease: The Cause, The Cure, The Controversy. John Hopkins University Press, Baltimore, Maryland.Google Scholar
  5. Brauer, F., Nohel, J.A., 1969. The Qualitative Theory of Ordinary Differential Equations. W. A. Benjamin, Inc., New York.Google Scholar
  6. CDC, 1997. Demographic differences in notifiable infectious disease morbidity. MMWR 46, 637–641.Google Scholar
  7. Davidson, W.R., Siefken, D.A., Creekmore, L.H., 1994a. Influence of annual and biennial prescribed burning during March on the abundance of Amblyomma americanum (Acari: Ixodidae) in central Georgia. J. Med. Entomol. 31, 72–81.Google Scholar
  8. Davidson, W.R., Siefken, D.A., Creekmore, L.H., 1994b. Seasonal and annual abundance of Amblyomma americanum (Acari: Ixodidae) in central Georgia. J. Med. Entomol. 31, 67–71.Google Scholar
  9. Dawson, J.E., Childs, J.E., Biggie, K.L., Moore, C., Stallknecht, D., Shaddock, J., Bouseman, J., Hofmeister, E., Olson, J.G., 1994. White-tailed deer as a potential reservoir of Ehrlichia spp. J. Wildl. Dis. 30, 162–168.Google Scholar
  10. Des Vignes, F., Levin, M.L., Fish, D., 1999. Comparative vector competence of dermacentor variabilis and ixodes scapularis (acari: Ixodidae) for the agent of human granulocytic ehrlichiosis. J. Med. Entomol. 36, 182–185.Google Scholar
  11. Ewing, S.A., Dawson, J.E., Kocan, A.A., Barker, R.W., Warner, C.K., Panciera, R.J., Fox, J.C., Kocan, K.M., Blouin, E.F., 1995. Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 32, 368–374.Google Scholar
  12. Fitzgibbon, W.E., Parrott, M.E., Webb, G.F., 1996. A diffusive epidemic model for a host-vector system. In: Martelli, M., Cooke, K., Cumberbatch, E., Tang, B., Thieme, H. (Eds.), Differential Equations and Applications to Biology and Industry. World Scientific Press, Singapore, pp. 401–408.Google Scholar
  13. Gerhardt, R.R., Lohmeyer, K.H., Marsland, E.J., Paulsen, D.J., 1998. Seasonal abundance of the free-living stages of the lone star tick (Ambloymma americanum) in Cumberland County, Tennessee. J. Tenn. Acad. Sci. 73, 100–103.Google Scholar
  14. Ghosh, M., Pugliese, A., 2004. Seasonal population dynamics of ticks, and its influence on infection transmission: A semi-discrete approach. Bull. Math. Biol. 66, 1659–1684.CrossRefMathSciNetGoogle Scholar
  15. Haile, D.G., Mount, G.A., 1987. Computer simulation of population dynamics of the lone star tick, Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 24, 356–369.Google Scholar
  16. Lockhart, J.M., Davidson, W.R., Dawson, J.E., Stallknecht, D.E., 1995. Temporal association of Amblyomma americanum with the presence of Ehrlichia chaffeensis reactive antibodies in white-tailed deer. J. Wildl. Dis. 31, 119–124.Google Scholar
  17. Lockhart, J.M., Davidson, W.R., Stallknecht, D.E., Dawson, J.E., 1996. Site-specific geographic association between Amblyomma americanum (Acari: Ixodidae) infestations and Ehrlichia chaffeensis-reactive (Rickettsiales: Ehrlichieae) antibodies in white-tailed deer. J. Med. Entomol. 33, 153–158.Google Scholar
  18. Lockhart, J.M., Davidson, W.R., Stallknecht, D.E., Dawson, J.E., Howerth, E.W., 1997. Isolation of Ehrlichia chaffeensis from wild white-tailed deer (Odocoileus virginianus) confirms their role as natural reservoir hosts. J. Clin. Microbiol. 35, 1681–1686.Google Scholar
  19. LoGiudice, K., Ostfeld, R.S., Schmidt, K.A., Keesing, F., 2003. The ecology of infectious disease: Effects of host diversity and community composition on lyme disease risk. Proc. Natl. Acad. Sci. 100, 567–571.CrossRefGoogle Scholar
  20. Maeda, K., Markowitz, N., Hawley, R.C., Ristic, M., Cox, D., McDade, J.E., 1987. Human infections with Ehrlichia canis, a leukocyctic ricksettsia. New Engl. J. Med. 316, 853–836.CrossRefGoogle Scholar
  21. Marsland, E.J., 1997. Tick control and monitoring of tick transmitted diseases in Eastern Tennessee. Master’s thesis, University of Tennessee.Google Scholar
  22. McQuiston, J.H., Paddock, C.D., Holman, R.C., Childs, J.E., 1999. The human ehrlichioses in the united states. Emerg. Infect. Dis. 5, 635–642.CrossRefGoogle Scholar
  23. Mount, G.A., Haile, D.G., 1989. Computer simulation of population dynamics of the american dog tick (Acari: Ixodidea). J. Med. Entomol. 26, 60–76.Google Scholar
  24. Mount, G.A., Haile, D.G., Barnard, D.R., Daniels, E., 1993. New version of LSTSIM for computer simulation of Amblyomma americanum (Acari: Ixodidae) population dynamics. J. Med. Entomol. 30, 843–857.Google Scholar
  25. Mount, G.A., Haile, D.G., Daniels, E., 1997a. Simulation of blacklegged tick (Acari: Ixodidea) population dynamics and transmission of borrelia burgdorferi. J. Med. Entomol. 34, 461–484.Google Scholar
  26. Mount, G.A., Haile, D.G., Daniels, E., 1997b. Simulation of management strategies for the blacklegged tick (Acari: Ixodidea) and the Lyme disease spirochete, borrelia burgdorferi. J. Med. Entomol. 90, 672–683.Google Scholar
  27. Mount, G.A., Haile, D.G., Davey, R.B., Cooksey, L.M., 1991. Computer simulation of boophilus cattle tick (Acari: Ixodidea) population dynamics. J. Med. Entomol. 28, 223–240.Google Scholar
  28. Paddock, C.D., Childs, J.E., 2003. Ehrlichia chaffeensis: A prototypical emerging pathogen. Clin. Microbiol. Rev. 16, 37–64.CrossRefGoogle Scholar
  29. Pound, J.M., Miller, J.A., George, J.E., Oehler, D.D., Harmel, D.E., 1996. Systemic treatment of white-tailed deer with Ivermectin-medicated bait to control free-living populations of lone star ticks (Acari: Ixodidae). J. Med. Entomol. 33, 385–394.Google Scholar
  30. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1988. Numerical Recipes in C. Cambridge University Press, Cambridge.MATHGoogle Scholar
  31. Radcliffe, J., Rass, L., 1984. The spatial spread and final size of models for the deterministic host-vector epidemic. Math. Biosci. 70, 123–146.MATHCrossRefMathSciNetGoogle Scholar
  32. Radcliffe, J., Rass, L., 1985. The rate of spread of infection in models for the deterministic host-vector epidemic. Math. Biosci. 74, 257–273.MATHCrossRefMathSciNetGoogle Scholar
  33. Randolph, S., 1999. Epidemiological uses of a population model for the tick Rhipicephalus appendiculatus. Trop. Med. Int. Health 4, A34–A42.CrossRefGoogle Scholar
  34. Richter, D., Spielman, A., Komar, N., Matuschka, F.-R., 2000. Competence of american robins as reservoir hosts for lyme disease spirochetes. Emerg. Infect. Dis. 6, 133–138.CrossRefGoogle Scholar
  35. Sandberg, S., Awerbuch, T.E., Spielman, A., 1992. A comprehensive multiple matrix model representing the life cycle of the tick that transmits the age of Lyme disease. J. Theor. Biol. 157, 203–220.CrossRefGoogle Scholar
  36. Schulze, T.L., Jordan, R.A., Hung, R.W., 2001. Effects of selected meteorological factors on diurnal questing of ixodes scapularis and amblyomma americanum (acari: Ixodidade). J. Med. Entomol. 38, 318–324.CrossRefGoogle Scholar
  37. Sonenshine, D.E., Mather, T.N., 1994. Ecological Dynamics of Tick-Borne Zoonoses. Oxford University Press, Oxford.Google Scholar
  38. Standaert, S.M., Dawson, J.E., Schaffner, W., Childs, J.E., Biggie, K.L., Singleton, J., Gerhardt, R.R., Knight, M.L., Hutcheson, R.J., 1995. Ehrlichiosis in a golf-oriented retirement community. N. Engl. J. Med. 333, 420–425.CrossRefGoogle Scholar
  39. University of Rhode Island Tick Research Laboratory, 2003. Ehrlichiosis. Http:// (Accessed 6 August 2003).

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  1. 1.Department of Epidemiology and Preventive Medicine, School of MedicineUniversity of MarylandBaltimoreUSA
  2. 2.University of TennesseeKnoxvilleUSA

Personalised recommendations