A Nonlocal Continuum Model for Biological Aggregation

  • Chad M. Topaz
  • Andrea L. Bertozzi
  • Mark A. Lewis
Original Article

Abstract

We construct a continuum model for biological aggregations in which individuals experience long-range social attraction and short-range dispersal. For the case of one spatial dimension, we study the steady states analytically and numerically. There exist strongly nonlinear states with compact support and steep edges that correspond to localized biological aggregations, or clumps. These steady-state clumps are reached through a dynamic coarsening process. In the limit of large population size, the clumps approach a constant density swarm with abrupt edges. We use energy arguments to understand the nonlinear selection of clump solutions, and to predict the internal density in the large population limit. The energy result holds in higher dimensions as well, and is demonstrated via numerical simulations in two dimensions.

Keywords

Aggregation Integrodifferential equation Pattern Swarm 

References

  1. Aldana, M., Huepe, C., 2003. Phase transitions in self-driven many-particle systems and related non-equilibrium models: A network approach. J. Stat. Phys. 112(1–2), 135–153.MATHCrossRefGoogle Scholar
  2. Alt, W., 1985. Degenerate diffusion equations with drift functionals modeling aggregation. Nonlinear Anal. 9, 811–836.MATHMathSciNetCrossRefGoogle Scholar
  3. Bates, P., Fife, P., 1990. Spectral comparison principles for the Cahn–Hilliard and phase-field equations, and time scales for coarsening. Physica D 43(2–3), 335–348.MATHMathSciNetCrossRefADSGoogle Scholar
  4. Ben-Jacob, E., Cohen, I., Levine, H., 2000. Cooperative self-organization of microorganisms. Adv. Phys. 49(4), 395–554.CrossRefADSGoogle Scholar
  5. Bertozzi, A., Grün, G., Witelski, T., 2001. Dewetting films: Bifurcations and concentrations. Nonlinearity 14(6), 1569–1592.MATHMathSciNetCrossRefADSGoogle Scholar
  6. Breder, C., 1954. Equations descriptive of fish schools and other animal aggregations. Ecology 35(3), 361–370.CrossRefGoogle Scholar
  7. Bressloff, P., 2004. Euclidean shift-twist symmetry in population models of self-aligning objects. SIAM J. Appl. Math. 64(5), 1668–1690.MATHMathSciNetCrossRefGoogle Scholar
  8. Cahn, J., 1968. Spinodal decomposition. Trans. Metall. Soc. AIME 242, 166–180.Google Scholar
  9. Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E., 2001. Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton University Press, Princeton, NJ.Google Scholar
  10. Couzin, I., Krause, J., James, R., Ruxton, G., Franks, N., 2002. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11.PubMedMathSciNetCrossRefGoogle Scholar
  11. Crawford, J., 1991. Introduction to bifurcation theory. Rev. Mod. Phys. 63(4), 991–1037.MathSciNetCrossRefADSGoogle Scholar
  12. Cross, M., Hohenberg, P., 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1112.CrossRefADSGoogle Scholar
  13. dal Passo, R., Demottoni, P., 1984. Aggregative effects for a reaction–advection equation. J. Math. Biol. 20, 103–112.MATHMathSciNetCrossRefGoogle Scholar
  14. Edelstein-Keshet, L., Watmough, J., Grünbaum, D., 1998. Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J. Math. Biol. 36(6), 515–549.MATHMathSciNetCrossRefGoogle Scholar
  15. Eilbeck, J., Furter, J., Grinfeld, M., 1989. On a stationary state characterization of transition from spinodal decomposition to nucleation behaviour in the Cahn–Hilliard model of phase separation. Phys. Lett. A 135(4–5), 272–275.MathSciNetCrossRefADSGoogle Scholar
  16. Erdmann, U., Ebeling, W., 2003. Collective motion of Brownian particles with hydrodynamic interactions. Fluct. Noise Lett. 3(2), L145–L154.CrossRefGoogle Scholar
  17. Erdmann, U., Ebeling, W., Anishchenko, V., 2002. Excitation of rotational modes in two-dimensional systems of driven Brownian particles. Phys. Rev. E 65, 061106.1–061106.9.MathSciNetCrossRefADSGoogle Scholar
  18. Flierl, G., Grünbaum, D., Levin, S., Olson, D., 1999. From individuals to aggregations: The interplay between behavior and physics. J. Theor. Biol. 196(4), 397–454.PubMedCrossRefGoogle Scholar
  19. Glasner, K., Witelski, T., 2003. Coarsening dynamics of dewetting films. Phys. Rev. E 67, 016302.1–016302.12.CrossRefADSGoogle Scholar
  20. Grégoire, G., Chaté, H., 2004. Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 025702.1–025702.4.CrossRefADSGoogle Scholar
  21. Grégoire, G., Chaté, H., Tu, Y., 2001. Active and passive particles: Modeling beads in a bacterial bath. Phys. Rev. E 64(1), 011902.1–011902.7.CrossRefADSGoogle Scholar
  22. Grégoire, G., Chaté, H., Tu, Y., 2003. Moving and staying together without a leader. Physica D 181(3–4), 157–170.MATHMathSciNetCrossRefADSGoogle Scholar
  23. Grünbaum, D., Okubo, A., 1994. Modelling social animal aggregations. In: Levin, S. (Ed.), Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol. 100. Springer-Verlag, Berlin, pp. 296–325.Google Scholar
  24. Holm, D., Putkaradze, V., 2005. Aggregation of finite size particles with variable mobility, Phys. Rev. Lett. 95(22), 226106.1–226106.4.CrossRefADSGoogle Scholar
  25. Hosono, Y., Mimura, M., 1989. Localized cluster solutions of nonlinear degenerate diffusion equations arising in population dynamics. SIAM J. Math. Anal. 20, 845–869.MATHMathSciNetCrossRefGoogle Scholar
  26. Ikeda, T., 1984. Stationary solutions of a spatially aggregating population model. Proc. Jpn. Acad. A 60, 46–48.MATHGoogle Scholar
  27. Ikeda, T., 1985. Standing pulse-like solutions of a spatially aggregating population model. Jpn. J. Appl. Math. 2, 111–149.MATHCrossRefGoogle Scholar
  28. Ikeda, T., Nagai, T., 1987. Stability of localized stationary solutions. Jpn. J. Appl. Math. 4, 73–97.MATHMathSciNetGoogle Scholar
  29. Kawasaki, K., 1978. Diffusion and the formation of spatial distributions. Math. Sci. 16(183), 47–52.Google Scholar
  30. Levine, H., Rappel, W., Cohen, I., 2001. Self-organization in systems of self-propelled particles. Phys. Rev. E 63, 017101.1–017101.4.CrossRefADSGoogle Scholar
  31. Mimura, M., Yamaguti, M., 1982. Pattern formation in interacting and diffusing systems in population biology. Adv. Biophys. 15, 19–65.PubMedCrossRefGoogle Scholar
  32. Mogilner, A., Edelstein-Keshet, L., 1999. A non-local model for a swarm. J. Math. Biol. 38(6), 534–570.MATHMathSciNetCrossRefGoogle Scholar
  33. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A., 2003. Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47(4), 353–389.PubMedMATHMathSciNetCrossRefGoogle Scholar
  34. Nagai, T., Mimura, M., 1983. Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math. 43, 449–464.MATHMathSciNetCrossRefGoogle Scholar
  35. Okubo, A., 1980. Diffusion and Ecological Problems. Springer, New York.MATHGoogle Scholar
  36. Okubo, A., Grünbaum, D., Edelstein-Keshet, L., 2001. The dynamics of animal grouping. In: Okubo, A., Levin, S. (Eds.), Diffusion and Ecological Problems, 2nd edition. Interdisciplinary Applied Mathematics: Mathematical Biology, vol. 14. Springer Verlag, New York, Chapter 7, pp. 197–237.Google Scholar
  37. Okubo, A., Levin, S. (Eds.), 2001. Diffusion and Ecological Problems, 2nd edition. Interdisciplinary Applied Mathematics: Mathematical Biology, vol. 14. Springer, New York.MATHGoogle Scholar
  38. Okubo, A., Sakamoto, W., Inagaki, T., Kuroki, T., 1977. Studies on the schooling behavior of fish. Bull. Jpn. Soc. Sci. Fish 9, 1369–1377.Google Scholar
  39. Oron, A., Bankoff, S., 2001. Dynamics of a condensing liquid film under conjoining/disjoining pressures. Phys. Fluids 13(5), 1107–1117.CrossRefADSGoogle Scholar
  40. Parrish, J., Edelstein-Keshet, L., 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101.PubMedCrossRefADSGoogle Scholar
  41. Parrish, J., Hamner, W. (Eds.), 1997. Animal Groups in Three Dimensions. Cambridge University Press, Cambridge, UK.Google Scholar
  42. Parrish, J., Viscido, S., Grünbaum, D., 2003. Self-organized fish schools: An examination of emergent properties. Bio. Bull. 202(3), 296–305.Google Scholar
  43. Sakai, S., 1973. A model for group structure and its behavior. Biophysics 13, 82–90.Google Scholar
  44. Satsuma, J., Mimura, M., 1985. Exact treatments of nonlinear diffusion equations with singular integral terms. J Phys. Soc. Jpn. 54, 894–900.MathSciNetCrossRefADSGoogle Scholar
  45. Schweitzer, F., Ebeling, W., Tilch, B., 2001. Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics. Phys. Rev. E 64, 021110.1–0211101.2.CrossRefADSGoogle Scholar
  46. Simha, R., Ramaswamy, S., 2002a. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89(5), 028181.1–058101.4.Google Scholar
  47. Simha, R., Ramaswamy, S., 2002b. Statistical hydrodynamics of ordered suspensions of self-propelled particles: Waves, giant number fluctuations and instabilities. Physica A 306, 262–269.CrossRefADSMATHGoogle Scholar
  48. Suzuki, R., Sakai, S., 1973. Movement of a group of animals. Biophysics 13, 281–282.CrossRefGoogle Scholar
  49. Toner, J., Tu, Y., 1998. Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E 58(4), 4828–4858.MathSciNetCrossRefADSGoogle Scholar
  50. Topaz, C., Bertozzi, A., 2004. Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174.MATHMathSciNetCrossRefGoogle Scholar
  51. Tyutyunov, Y., Senina, I., Arditi, R., 2004. Clustering due to acceleration in the response to population gradient: A simple self-organizational model. Am. Nat. 164(6), 722–735.CrossRefGoogle Scholar
  52. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O., 1995. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229.PubMedCrossRefADSGoogle Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  • Chad M. Topaz
    • 1
  • Andrea L. Bertozzi
    • 2
  • Mark A. Lewis
    • 3
    • 4
  1. 1.Rossier School of EducationUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsUCLALos AngelesUSA
  3. 3.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada
  4. 4.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations