Bulletin of Mathematical Biology

, Volume 68, Issue 7, pp 1625–1660 | Cite as

An Optimization Algorithm for a Distributed-Loop Model of an Avian Urine Concentrating Mechanism

  • Mariano Marcano
  • Anita T. Layton
  • Harold E. Layton
Original Article

Abstract

To better understand how the avian kidney’s morphological and transepithelial transport properties affect the urine concentrating mechanism (UCM), an inverse problem was solved for a mathematical model of the quail UCM. In this model, a continuous, monotonically decreasing population distribution of tubes, as a function of medullary length, was used to represent the loops of Henle, which reach to varying levels along the avian medullary cones. A measure of concentrating mechanism efficiency – the ratio of the free-water absorption rate (FWA) to the total NaCl active transport rate (TAT) – was optimized by varying a set of parameters within bounds suggested by physiological experiments. Those parameters include transepithelial transport properties of renal tubules, length of the prebend enlargement of the descending limb (DL), DL and collecting duct (CD) inflows, plasma Na+ concentration, length of the cortical thick ascending limbs, central core solute diffusivity, and population distribution of loops of Henle and of CDs along the medullary cone. By selecting parameter values that increase urine flow rate (while maintaining a sufficiently high urine-to-plasma osmolality ratio (U/P)) and that reduce TAT, the optimization algorithm identified a set of parameter values that increased efficiency by ∼60% above base-case efficiency. Thus, higher efficiency can be achieved by increasing urine flow rather than increasing U/P. The algorithm also identified a set of parameters that reduced efficiency by ∼70% via the production of a urine having near-plasma osmolality at near-base-case TAT.

In separate studies, maximum efficiency was evaluated as selected parameters were varied over large ranges. Shorter cones were found to be more efficient than longer ones, and an optimal loop of Henle distribution was found that is consistent with experimental findings.

Keywords

Kidney Mathematical model Inverse problem Osmoregulation NaCl transport Countercurrent system Quail Free-water absorption rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braun, E.J., Dantzler, W.H., 1972. Function of mammalian-type and reptilian-type nephrons in kidney of desert quail. Am. J. Physiol. 222, 617–629.PubMedGoogle Scholar
  2. Braun, E.J., Reimer, P.R., 1988. Structure of avian loop of Henle as related to countercurrent multiplier system. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 255, F500—F512.Google Scholar
  3. Breinbauer, M., 1988. Das Nierenmodell als inverses problem, Diploma thesis, Technical University of Munich.Google Scholar
  4. Breinbauer, M., Lory, P., 1991. The kidney model as an inverse Problem. Appl. Math. Comp. 44, 195–223.MATHCrossRefGoogle Scholar
  5. Casotti, G., Lindberg, K.K., Braun, E.J., 2000. Functional morphology of the avian medullary cone. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 279, R1722—R1730.Google Scholar
  6. Chou, C., Knepper, M., 1992. In vitro perfusion of chinchilla thin limb segments: Segmentation and osmotic water permeability. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 263, F417—F426.Google Scholar
  7. Cussler, E.L., 1997, Diffusion: Mass Transfer in Fluid Systems, 2nd edition. Cambridge University Press, New York.Google Scholar
  8. Eaton, D.C., Pooler, J.P., 2004. Vander’s Renal Physiology, 6th edition. Lange Medical Books/McGraw-Hill.Google Scholar
  9. Emery, N., Poulson, T.L., Kinter, W.B., 1972. Production of concentrated urine by avian kidneys. Am. J. Physiol. 223, 180–187.PubMedGoogle Scholar
  10. Friedman, M.H., 1986. Principles and Models of Biological Transport. Springer-Verlag, Berlin.Google Scholar
  11. Goldstein, D.L., Braun, E.J., 1989. Structure and concentrating ability in the avian kidney. Am. J. Physiol. (Regulat. Integrat. Comp. Physiol. 25) 256, R501—R509.Google Scholar
  12. Gottschalk, C., Mylle, M., 1959. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am. J. Physiol. 196, 927–936.PubMedGoogle Scholar
  13. Greger, R., Velázquez, H., 1987. The cortical thick ascending limb and early distal convoluted tubule in the concentrating mechanism. Kidney Int. 31, 590–596.PubMedGoogle Scholar
  14. Han, J., Thompson, K., Chou, C., Knepper, M., 1992. Experimental tests of three-dimensional model of urinary concentrating mechanism. J. Am. Soc. Nephrol. 2, 1677–1688.PubMedGoogle Scholar
  15. Imai, M., 1977. Function of the thin ascending limb of Henle of rats and hamster perfused in vitro. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 232, F201—F209.Google Scholar
  16. Jamison, R.L., Kriz, W., 1982. Urinary Concentrating Mechanism: Structure and Function. Oxford University Press, New York.Google Scholar
  17. Johnson, O.W. 1979. Urinary organs. In: King A.S., McLelland, J. (Eds.), From and Function in Birds. Academic Press, London, Vol. 1, pp. 183–235.Google Scholar
  18. Kedem, O., Katchalsky, A., 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246.PubMedCrossRefGoogle Scholar
  19. Kedem, O., Leaf, A., 1966. The relation between salt and ionic transport coefficients. J. Gen. Physiol. 49, 655–662.PubMedCrossRefGoogle Scholar
  20. Kim, S., Tewarson, R.P., 1996. Computational techniques for inverse problems in kidney modeling. Appl. Math. Lett. 9(3), 77–81.MATHMathSciNetCrossRefGoogle Scholar
  21. Knepper, M., Saidel, G., Hascall, V., Dwyer, T., 2003. Concentration of solutes in the renal inner medulla: Interstitial hyaluronan as a mechano-osmotic transducer. Am. J. Physiol. Renal Physiol. 284, F433—F446.PubMedGoogle Scholar
  22. Koepsell, H., Kriz, W., Schnermann, J., 1972. Pattern of luminal diameter changes along the descending and ascending thin limbs of the loop of Henle in the inner medullary zone of the rat kidney. Z. Anat. Entwiekl-Gesch. 138, 321–328.CrossRefGoogle Scholar
  23. Kuhn, W., Ryffel, K., 1942. Herstellung konzentrierter Losöngen aus verdönnten durch blosse Membranwirkung: Ein Modellversuch zur Funktion der Niere. Z. Physiol. Chem. 276, 145–178.Google Scholar
  24. Laverty, G., Dantzler, W.H., 1982. Micropuncture of superficial nephrons in avian (Sturnus vulgaris) kidney. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 243, F561—F569.Google Scholar
  25. Layton, H.E., 1986. Distribution of Henle’s loops may enhance urine concentrating capability. Biophys. J. 49, 1033–1040.PubMedCrossRefGoogle Scholar
  26. Layton, H.E., Davies, J.M., 1993. Distributed solute and water reabsorption in a central core model of the renal medulla. Math. Biosci. 116, 169–196.PubMedMATHCrossRefGoogle Scholar
  27. Layton, H.E., Davies, J.M., Casotti, G., Braun, E.J., 2000. Mathematical model of an avian urine concentrating mechanism. Am. J. Physiol. Renal Physiol. 279, F1139—F1160.PubMedGoogle Scholar
  28. Layton, A.T., Layton, H.E., 2005. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla: II. Parameter sensitivity and tubular inhomogeneity. Am. J. Physiol. Renal Physiol. 289, F1367—F1381.PubMedCrossRefGoogle Scholar
  29. Layton, A., Pannabecker, T., Dantzler, W., Layton, H., 2004. Two modes for concentrating urine in rat inner medulla. Am. J. Physiol. Renal Physiol. 287, F816—F839.PubMedCrossRefGoogle Scholar
  30. Liu, W., Morimoto, T., Kondo, Y., Iinuma, K., Uchida, S., Imai, M., 2001. “Avian-type” renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates. Kidney Int. 60, 680–693.PubMedCrossRefGoogle Scholar
  31. Marcano-Velázquez, M., Layton, H.E., 2003. An inverse algorithm for a mathematical model of an avian urine concentrating mechanism. Bull. Math. Biol. 65(4), 665–691.PubMedCrossRefGoogle Scholar
  32. Mejía, R., Sands, J.M., Stephenson, J.L., Knepper, M.A., 1989. Renal actions of atrial natriuretic factor: A mathematical modeling study. Am. J. Physiol. Renal Physiol. 257, 1146–157.Google Scholar
  33. Mejía, R., Stephenson, J., 1979. Numerical solution of multinephron kidney equations. J. Comp. Phys. 32(2), 235–246.MATHCrossRefADSGoogle Scholar
  34. Michalewics, Z., 1999. Genetic Algorithms + Data Structures = Evolution Programs, 3rd edition. Springer-Verlag, Berlin.Google Scholar
  35. Miwa, T., Nishimura, H., 1986. Diluting segment in avian kidney: II. Water and chloride transport. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 250, R341—R347.Google Scholar
  36. Murtagh, B.A., Saunders, M.A., 1998. MINOS 5.5 User’s Guide, Technical Report Sol 83-20R, Department of Operations Research, Stanford University, Stanford, CA.Google Scholar
  37. Netter, F., 1973. The CIBA Collection of Medical Illustrations: Vol. 6. Kidneys, Ureters, and Urinary Bladder. CIBA Pharmaceutical Company, Summit, NJ.Google Scholar
  38. Nishimura, H., Koseki, C., Imai, M., Braun, E.J., 1989. Sodium chloride and water transport in the thin descending limb of Henle of the quail. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 257, F994—F1002.Google Scholar
  39. Nishimura, H., Koseki, C., Patel, T.B., 1996. Water transport in collecting ducts of Japanese quail. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 271, R1535—R1543.Google Scholar
  40. Pannabecker, T., Abbott, D., Dantzler, W., 2004. Three-dimensional functional reconstruction of inner medullary thin limbs of Henle’s loop. Am. J. Physiol. Renal Physiol. 286, F38—F45.PubMedCrossRefGoogle Scholar
  41. Sands, J.M., 2002. Urine concentrating mechanism: Measured permeability values in medullary nephron segments and urea transport processes. In: Layton, H.E., Weinstein, A.M. (Eds.), Membrane Transport and Renal Physiology, The IMA Volumes in Mathematics and Its Applications, vol. 129. Springer-Verlag, New York, pp. 193–210.Google Scholar
  42. Sands, J.M., Layton, H.E., 2000. Urine concentrating mechanism and its regulation. In: Seldin, D.W., Giebisch, G. (Eds.), The Kidney: Physiology and Pathophysiology, 3rd edition. Lippincott, Williams & Williams, Philadelphia, PA, pp. 1175–1216.Google Scholar
  43. Schnermann, J., Briggs, J., Schubert, G., 1982. In situ studies of the distal convoluted tubule in the rat: I. Evidence for NaCl secretion. Am. J. Physiol. 243, F160—F166 (Renal Fluid Electrolyte Physiol. 12).PubMedGoogle Scholar
  44. Skadhauge, E., 1977. Solute composition of the osmotic space of ureteral urine in dehydrated chickens (gallus domesticus), Comp. Biochem. Physiol. 56A, 271–274.CrossRefGoogle Scholar
  45. Skadhauge, E., Schmidt-Nielsen, B., 1967: Renal medullary electrolyte and urea gradient in chickens and turkeys. Am. J. Physiol. 212, 1313–1318.PubMedGoogle Scholar
  46. Stephenson, J.L., 1972. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 2, 85–94.PubMedGoogle Scholar
  47. Stephenson, J.L., Tewarson, R.P., Mejía, R., 1974. Quantitative analysis of mass and energy balance in non-ideal models of the renal counterflow system. PNAS 71, 1618–1622.PubMedMATHCrossRefADSGoogle Scholar
  48. Stephenson, J.L., Zhang, Y., Tewarson, R., 1989. Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla. Am. J. Physiol. 257, F399—F413 (Renal Fluid Electrolyte Physiol. 26).PubMedGoogle Scholar
  49. Stokes, J.B., 1982. Sodium and potassium transport across the cortical and outer medullary collecting duct tubule of the rabbit: Evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242, F514—F520 (Renal Fluid Electrolyte Physiol. 11).PubMedGoogle Scholar
  50. Tewarson, R.P., 1993a. Inverse problem for kidney concentrating mechanism. Appl. Math. Lett. 6(5), 63–66.CrossRefMATHGoogle Scholar
  51. Tewarson, R.P., 1993b. Models of kidney concentrating mechanism: Relationship between core concentration and tube permeabilities. Appl. Math. Lett. 6(6), 71–74.CrossRefMATHGoogle Scholar
  52. Tewarson, R.P., Marcano, M., 1997. Use of generalized inverses in a renal optimization problem. Inverse Probl. Eng. 5, 1–9.Google Scholar
  53. Tewarson, R.P., Wang, H., Stephenson, J.L., Jen, J.F., 1991. Efficient solution of differential equations for kidney concentrating mechanism analyses. Appl. Math. Lett. 4(6), 69–72.MATHCrossRefGoogle Scholar
  54. Weast, R.C.E., 1974. Handbook of Chemistry and Physics, 55th edition. CRC Press, Cleveland, OH.MATHGoogle Scholar
  55. Wesson, L.G., Anslow, W.P., 1952. Effect of osmotic and mercurial diuresis on simultaneous water diuresis. Am. J. Physiol. 170, 255–269.PubMedGoogle Scholar
  56. Wexler, A.S., Kalaba, R.E., Marsh, D.H., 1991a. Three-dimensional anatomy and renal concentrating mechanism: I. Modeling results. Am. J. Physiol. 260, F368—F383 (Renal Fluid Electrolyte Physiol. 29).Google Scholar
  57. Wexler, A.S., Kalaba, R.E., Marsh, D.H., 1991b. Three-dimensional anatomy and renal concentrating mechanism: II. Sensitivity results. Am. J. Physiol. 260, F384—F394 (Renal Fluid Electrolyte Physiol. 29).Google Scholar
  58. Williams, J.B., Pacelli, M.M., Braun, E.J., 1991. The effect of water deprivation on renal function in conscious unrestrained Gambel’s quail (Callipepla gambelii). Physiol. Zool. 4(5), 1200–1216.Google Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  • Mariano Marcano
    • 1
  • Anita T. Layton
    • 2
  • Harold E. Layton
    • 2
  1. 1.Department of MathematicsUniversity of Puerto RicoPuerto RicoUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations