Bulletin of Mathematical Biology

, Volume 68, Issue 7, pp 1761–1778 | Cite as

How Salmonella typhimurium measures the length of flagellar filaments

Original Paper

Abstract

We present a mathematical model for the growth and length regulation of the filament of the flagellar motor of Salmonella Typhimurium. Under the assumption that the molecular constituents are translocated into the nascent filament by an ATPase and then move by molecular diffusion to the growing end, we find a monotonically decreasing relationship between the speed and the velocity of growth that is inversely proportional to length for a large length. This gives qualitative but not quantitative agreement with data of the velocity of growth. We also propose that the length of filaments is “measured” by the rate of secretion of the σ28-antifactor FlgM, using negative feedback, and present a mathematical model of this regulatory network. The combination of this regulatory network with the length-dependent rate of growth enable the bacterium to detect length shortening and regrow severed flagellar filaments.

Keywords

Flagellar Filament Length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chadsey, M.S., Karlinsey, J.E., Hughes, K.T., 1998. The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium σ28 RNA polymerase holoenzyme. Genes Dev. 12, 3123–3136.Google Scholar
  2. Chilcott, G.S., Hughes, K.T., 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escheria coli. Microbiol. Mol. Biol. Rev. 64, 694–708.PubMedCrossRefGoogle Scholar
  3. Dockery, J.D., Keener, J.P., 2001. A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 63, 95–116.PubMedCrossRefGoogle Scholar
  4. Hughes, K.T., Aldridge, P.D., 2001. Putting a lid on it. Nat. Struct. Biol. 8, 96–97.PubMedCrossRefGoogle Scholar
  5. Iino, T., 1974. Assembly of Salmonella flagellin in vitro and in vivo. J. Supramol. Struct. 2, 372–384.PubMedCrossRefGoogle Scholar
  6. Keener, J.P., 2005. A model for length control of flagellar hooks of Salmonella typhimurium. J. Theor. Biol. 234, 263–275.PubMedMathSciNetCrossRefGoogle Scholar
  7. Kutsukake, K., Ohya, Y., Iino, T., 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172, 741–747.PubMedGoogle Scholar
  8. Macnab, R.M., 2003, How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100.PubMedCrossRefGoogle Scholar
  9. Marshall, W.F., 2004. Cellular length control systems. Annu. Rev. Cell Dev. Biol. 20, 677–693.PubMedMathSciNetCrossRefGoogle Scholar
  10. Minamino, T., Macnab, R.M., 2000. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol. 19, 1–5.CrossRefGoogle Scholar
  11. Mogilner, A., Rubenstein, B., 2005. The physics of filopodial protrusion. Biophys. J. 89, 1–14.CrossRefGoogle Scholar
  12. Yonekura, K., Maki-Yonekura, S., Namba, K., 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650.PubMedCrossRefADSGoogle Scholar
  13. Zaslaver, A., Mayo, A.E., Rosenberg, R., Bashkiin, P., Sberro, H., Tsalyuk, M., Surette, M.G., Alon, U., 2004. Just-in-time transcription program in metabolic pathways. Nat. Genet. 36(5), 486.PubMedCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations