The BC-system and L-functions

Special Feature
  • 159 Downloads

Abstract

In these lectures we survey some relations between L-functions and the BC-system, including new results obtained in collaboration with C. Consani. For each prime p and embedding σ of the multiplicative group of an algebraic closure of \({\mathbb {F}_p}\) as complex roots of unity, we construct a p-adic indecomposable representation πσ of the integral BC-system. This construction is done using the identification of the big Witt ring of \({\bar{\mathbb F}_p}\) and by implementing the Artin–Hasse exponentials. The obtained representations are the p-adic analogues of the complex, extremal KMS states of the BC-system. We use the theory of p-adic L-functions to determine the partition function. Together with the analogue of the Witt construction in characteristic one, these results provide further evidence towards the construction of an analogue, for the global field of rational numbers, of the curve which provides the geometric support for the arithmetic of function fields.

Keywords and phrases

BC-system Witt rings adèle class space 

Mathematics Subject Classification (2010)

14A15 14G10 11M55 58B34 

References

  1. 1.
    Almkvist G.: Endomorphisms of finetely generated projective modules over a commutative ring. Ark. Mat. 11, 263–301 (1973)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Almkvist G.: The Grothendieck ring of the category of endomorphisms. J. Algebra 28, 375–388 (1974)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Auer R.: A functorial property of nested Witt vectors. J. Algebra 252, 293–299 (2002)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bost J.-B., Connes A.: Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.) 1, 411–457 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cartier P.: Groupes formels associés aux anneaux de Witt généralisés. C. R. Acad. Sci. Paris Sér. A-B 265, A49–A52 (1967)MathSciNetGoogle Scholar
  6. 6.
    P. Cartier, Analyse numérique d’un problème de valeurs propres a haute précision, applications aux fonctions automorphes, preprint IHÉS, 1978.Google Scholar
  7. 7.
    A. Connes, Noncommutative Geometry, Academic Press, 1994.Google Scholar
  8. 8.
    Connes A.: Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math. (N.S.) 5, 29–106 (1999)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    A. Connes, The Witt construction in characteristic one and quantization, to appear in the Proceedings volume dedicated to H. Moscovici (2011).Google Scholar
  10. 10.
    A. Connes and C. Consani, On the notion of geometry over \({\mathbb {F}_1}\) , to appear in J. Algebraic Geom.; arXiv:0809.2926v2[math.AG].Google Scholar
  11. 11.
    A. Connes and C. Consani, Schemes over \({\mathbb {F}_1}\) and zeta functions, to appear in Compos. Math.; arXiv:0903.2024v3[math.AG, NT].Google Scholar
  12. 12.
    A. Connes and C. Consani, Characteristic one, entropy and the absolute point, to appear in the Proceedings of the 21st JAMI Conference, Baltimore, 2009, Johns Hopkins Univ. Press; arXiv:0911.3537v1[math.AG].Google Scholar
  13. 13.
    A. Connes and C. Consani, The hyperring of adèle classes, to appear in J. Number Theory; arXiv:1001.4260[math.AG, NT].Google Scholar
  14. 14.
    A. Connes and C. Consani, From monoids to hyperstructures: in search of an absolute arithmetic, In: Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter, 2010, pp. 147–198.Google Scholar
  15. 15.
    A. Connes and C. Consani, On the arithmetic of the BC-system, arXiv:1103.4672.Google Scholar
  16. 16.
    Connes A., Consani C., Marcolli M.: Noncommutative geometry and motives: the thermodynamics of endomotives. Adv. Math. 214, 761–831 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Connes A., Consani C., Marcolli M.: Fun with \({\mathbb {F}_1}\) . J. Number Theory 129, 1532–1561 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    A. Connes, C. Consani and M. Marcolli, The Weil proof and the geometry of the adèles class space, In: Algebra, Arithmetic and Geometry—Manin Festschrift, Progr. Math., Birkhäuser, Boston, MA, 2010, pp. 339–405.Google Scholar
  19. 19.
    A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields, and Motives, Amer. Math. Soc. Colloq. Publ., 55, Amer. Math. Soc., Providence, RI, 2008.Google Scholar
  20. 20.
    Consani C., Marcolli M.: Quantum statistical mechanics over function fields. J. Number Theory 123, 487–528 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    A. Deitmar, Schemes over \({\mathbb {F}_1}\) , In: Number Fields and Function Fields—Two Parallel Worlds, (eds. G. van der Geer, B. Moonen and R. Schoof), Progr. Math., 239, Birkhäuser, Boston, MA, 2005, pp. 87–100.Google Scholar
  22. 22.
    J. Golan, Semi-rings and their applications; updated and expanded version, The Theory of Semi-rings, with Applications to Mathematics and Theoretical Computer Science, Longman Sci. Tech., Harlow, 1992, Kluwer Acad. Publ, Dordrecht, 1999.Google Scholar
  23. 23.
    Guillemin V.: Lectures on spectral theory of elliptic operators. Duke Math. J. 44, 485–517 (1977)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., 52, Springer-Verlag, 1977.Google Scholar
  25. 25.
    M. Hazewinkel, Witt vectors. Part 1, In: Handbook of Algebra, (ed. M. Hazewinkel), 6, Elsevier, 2009, pp. 319–472.Google Scholar
  26. 26.
    L. Hesselholt, Lecture notes on the big De Rham Witt complex.Google Scholar
  27. 27.
    A.E. Ingham, The Distribution of Prime Numbers. With a Foreword by R.C. Vaughan, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1990.Google Scholar
  28. 28.
    Kato K.: Toric singularities. Amer. J. Math. 116, 1073–1099 (1994)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    V.N. Kolokoltsov and V.P. Maslov, Idempotent Analysis and Its Applications. Translation of Idempotent Analysis and Its Application in Optimal Control (Russian), Nauka, Moscow, 1994. Translated by V.E. Nazaikinskii. With an appendix by Pierre Del Moral. Math. Appl., 401, Kluwer Acad. Publ. Group, Dordrecht, 1997.Google Scholar
  30. 30.
    M. Kontsevich, The \({1\frac 12}\) -logarithm, Friedrich Hirzebruchs Emeritierung, Bonn, November (1995)Google Scholar
  31. 31.
    M. Krasner, Approximation des corps valués complets de caractéristique \({p\not=0}\) par ceux de caractéristique 0 (French), In: Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, 1957, pp. 129–206.Google Scholar
  32. 32.
    Krasner M.: A class of hyperrings and hyperfields. Internat. J. Math. Math. Sci. 6, 307–311 (1983)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    N. Kurokawa, Multiple zeta functions: an example, In: Zeta Functions in Geometry, Tokyo, 1990, Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo, 1992, pp. 219–226.Google Scholar
  34. 34.
    N. Kurokawa, H. Ochiai and A. Wakayama, Absolute derivations and zeta functions, Doc. Math., Extra Vol.: Kazuya Kato’s Fiftieth Birthday (2003), 565–584.Google Scholar
  35. 35.
    Lenstra H.W.: Finding isomorphisms between finite fields. Math. Comp. 56, 329–347 (1991)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    P. Lescot, Algèbre absolue, arXiv:0911.1989.Google Scholar
  37. 37.
    G.L. Litvinov, Tropical mathematics, idempotent analysis, classical mechanics and geometry, arXiv:1005.1247.Google Scholar
  38. 38.
    Y.I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Columbia University Number Theory Seminar, 1992, Astérisque, 228 (1995), 121–163.Google Scholar
  39. 39.
    Marcolli M.: Cyclotomy and endomotives. P-Adic Numbers Ultrametric Anal. Appl. 1, 217–263 (2009)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Meyer R.: On a representation of the idele class group related to primes and zeros of L-functions. Duke Math. J. 127, 519–595 (2005)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    D. Mumford, Lectures on Curves on an Algebraic Surface, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, NJ, 1966.Google Scholar
  42. 42.
    J. Rabinoff, The theory of Witt vectors, notes available at http://math.harvard.edu/rabinoff/misc/witt.pdf.
  43. 43.
    J.-P. Ramis, Séries divergentes et théories asymptotiques, Bull. Soc. Math. France, 121 (1993), Panoramas et Synthèses, suppl., 74 pp.Google Scholar
  44. 44.
    A. Robert, A Course in p-adic Analysis (English summary), Grad. Texts in Math., 198, Springer-Verlag, 2000.Google Scholar
  45. 45.
    Roberts L.G.: The ring of Witt vectors. Queen’s Papers in Pure and Appl. Math. 105, 2–36 (1997)Google Scholar
  46. 46.
    J.-P. Serre, Corps locaux (French), Deuxième ed., Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968.Google Scholar
  47. 47.
    Soulé C.: Les variétés sur le corps à un élément. Mosc. Math. J. 4, 217–244 (2004)MathSciNetMATHGoogle Scholar
  48. 48.
    Steinberg R.: A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71, 274–282 (1951)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    O. Teichmüller, Über die Struktur diskret bewerteter perfekter Körper, Nachr. Ges. Wiss. Göttingen N.F., 1 (1936), 151–161.Google Scholar
  50. 50.
    J. Tits, Sur les analogues algébriques des groupes semi-simples complexes, In: Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, 1957, pp. 261–289.Google Scholar
  51. 51.
    Töen B.: Vaquié M., Au dessous de \({(\mathbb {Z})}\) . J. K-Theory 3, 437–500 (2009)MathSciNetCrossRefGoogle Scholar
  52. 52.
    O. Viro, Hyperfields for tropical geometry I. Hyperfields and dequantization, arXiv:1006.3034v2.Google Scholar
  53. 53.
    L.C. Washington, Introduction to Cyclotomic Fields. Second ed., Grad. Texts in Math., 83, Springer-Verlag, 1997.Google Scholar
  54. 54.
    Weil A.: Sur la théorie du corps de classes. J. Math. Soc. Japan 3, 1–35 (1951)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    E. Witt, Vektorkalkül und Endomorphismen der Einspotenzreihengruppe, In: Ernst Witt: Collected Papers, (ed. I. Kersten), Springer-Verlag, 1998, pp. 157–164.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2011

Authors and Affiliations

  1. 1.Collège de FranceParisFrance
  2. 2.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  3. 3.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations