Japanese Journal of Mathematics

, Volume 6, Issue 2, pp 65–119

Quantization via mirror symmetry

Special Feature: The Takagi Lectures


When combined with mirror symmetry, the A-model approach to quantization leads to a fairly simple and tractable problem. The most interesting part of the problem then becomes finding the mirror of the coisotropic brane. We illustrate how it can be addressed in a number of interesting examples related to representation theory and gauge theory, in which mirror geometry is naturally associated with the Langlands dual group. Hyperholomorphic sheaves and (B, B, B) branes play an important role in the B-model approach to quantization.

Keywords and phrases

mirror symmetry derived category branes quantization symplectic geometry 

Mathematics Subject Classification (2010)

18F20 51P05 81S10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AZ.
    Aldi M., Zaslow E.: Coisotropic branes, noncommutativity, and the mirror correspondence. J. High Energy Phys. 06, 019 (2005) arXiv:hep-th/0501247CrossRefMathSciNetGoogle Scholar
  2. A.
    Aspinwall P.S.: Enhanced gauge symmetries and K3 surfaces. Phys. Lett. B 357, 329–334 (1995) arXiv:hep-th/9507012CrossRefMathSciNetGoogle Scholar
  3. AB.
    Atiyah M.F., Bott R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A. 308, 523–615 (1983)CrossRefMATHMathSciNetGoogle Scholar
  4. ASS.
    M.F. Atiyah and I.M. Singer, The index of elliptic operators. I, Ann. Math. (2), 87 (1968), 484–530. M.F. Atiyah and G.B. Segal, The index of elliptic operators. II, Ann. Math. (2), 87 (1968), 531–545. M.F. Atiyah and I.M Singer, The index of elliptic operators. III, Ann. Math. (2), 87 (1968), 546–604.Google Scholar
  5. BFFLS.
    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Physics 111, 61–110 (1978)CrossRefMATHMathSciNetGoogle Scholar
  6. B.
    Beauville A.: Vector bundles on curves and generalized theta functions: recent results and open problems. Math. Sci. Res. Inst. Publ. 28, 17–33 (1995)MathSciNetGoogle Scholar
  7. BNR.
    Beauville A., Narasimhan M.S., Ramanan S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)CrossRefMATHMathSciNetGoogle Scholar
  8. BGV.
    N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992.Google Scholar
  9. BJSV.
    Bershadsky M., Johansen A., Sadov V., Vafa C.: Topological reduction of 4D SYM to 2D σ-models. Nuclear Phys. B 448, 166–186 (1995) arXiv:hep-th/9501096CrossRefMATHMathSciNetGoogle Scholar
  10. BGG1.
    Bradlow S.B., García-Prada O., Gothen P.B.: Surface group representations and U(p,q)-Higgs bundles, J. Differential Geom. 64, 111–170 (2003)MATHMathSciNetGoogle Scholar
  11. BGG2.
    S.B. Bradlow, O. García-Prada and P.B. Gothen, Representations of surface groups in the general linear group, In: Proceedings of the XII Fall Workshop on Geometry and Physics, Coimbra, 2003, Publ. R. Soc. Mat. Esp., 7, R. Soc. Mat. Esp., Madrid, 2004, pp. 83–94.Google Scholar
  12. BKR.
    Bridgeland T., King A., Reid M.: The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc. 14, 535–554 (2001)CrossRefMATHMathSciNetGoogle Scholar
  13. C.
    Calabi E.: Métriques Kählériennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. (4) 12, 269–294 (1979)MathSciNetGoogle Scholar
  14. CV.
    Cecotti S., Vafa C.: Topological—anti-topological fusion. Nuclear Phys. B 367, 359–461 (1991)CrossRefMATHMathSciNetGoogle Scholar
  15. CGLP.
    Cvetič M., Gibbons G.W., Lü H., Pope C.N.: Hyper-Kähler Calabi metrics, L 2 harmonic forms, resolved M2-branes, and AdS4/CFT3 correspondence. Nuclear Phys. B 617, 151–197 (2001) arXiv:hep-th/0102185CrossRefMATHMathSciNetGoogle Scholar
  16. QFT.
    P. Deligne, P. Etingof, D.S. Freed, L.C. Jeffrey, D. Kazhdan, J.W. Morgan, D.R. Morrison and E. Witten, Quantum Fields and Strings: A Course for Mathematicians, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  17. DM.
    M.R. Douglas and G. Moore, D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167.Google Scholar
  18. D.
    Dubrovin B.: Integrable systems in topological field theory. Nuclear Phys. B 379, 627–689 (1992)CrossRefMathSciNetGoogle Scholar
  19. FW.
    Frenkel E., Witten E.: Geometric endoscopy and mirror symmetry. Commun. Number Theory Phys. 2, 113–283 (2008) arXiv:0710.5939MATHMathSciNetGoogle Scholar
  20. FG.
    E. Frenkel and S. Gukov, S-duality of branes and geometric Langlands correspondence, to appear.Google Scholar
  21. GP.
    O. García-Prada, Involutions of the moduli space of \({SL(n, \mathbb{C})}\) -Higgs bundles and real forms, In: Vector Bundles and Low Codimensional Subvarieties: State of the Art and Recent Developments, (eds. G. Casnati, F. Catanese and R. Notari), Quad. Mat., 21, Dept. Math., Seconda Univ. Napoli, Caserta, 2007, pp. 219–238.Google Scholar
  22. GPO.
    O. García-Prada and A.G. Oliveira, Higgs bundles for the non-compact dual of the unitary group, arXiv:1004.0245.Google Scholar
  23. Go.
    Goldman W.M.: The modular group action on real SL(2)-characters of a one-holed torus. Geom. Topol. 7, 443–486 (2003)CrossRefMATHMathSciNetGoogle Scholar
  24. Gu.
    S. Gukov, Surface operators and knot homologies, In: Proceedings of the International Congress on Mathematical Physics 2006, Rio de Janeiro; arXiv:0706.2369.Google Scholar
  25. GW.
    Gukov S., Witten E.: Branes and quantization. Adv. Theor. Math. Phys. 13, 1445–1518 (2009) arXiv:0809.0305MATHMathSciNetGoogle Scholar
  26. GW1.
    S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, In: Current Developments in Mathematics, 2006, Int. Press, Somerville, MA, 2008, pp. 35–180.Google Scholar
  27. GW2.
    Gukov S., Witten E.: Rigid surface operators. Adv. Theor. Math. Phys. 14, 87–177 (2010) arXiv:0804.1561MATHMathSciNetGoogle Scholar
  28. Ha.
    T. Hausel, Geometry of the moduli space of Higgs bundles, Ph. D. thesis, 1998, arXiv: math/0107040.Google Scholar
  29. HT.
    Hausel T., Thaddeus M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153, 197–229 (2003) arXiv:math/0205236CrossRefMATHMathSciNetGoogle Scholar
  30. Hi.
    Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55, 59–126 (1987)CrossRefMATHMathSciNetGoogle Scholar
  31. mirror.
    K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Zaslow, Mirror Symmetry, Clay Math. Monogr., 1, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  32. KV.
    Kapranov M., Vasserot E.: Kleinian singularities, derived categories and Hall algebras. Math. Ann. 316, 565–576 (2000) arXiv:math/9812016CrossRefMATHMathSciNetGoogle Scholar
  33. KO.
    Kapustin A., Orlov D.: Remarks on A-branes, mirror symmetry, and the Fukaya category. J. Geom. Phys. 48, 84–99 (2003) arXiv:hep-th/0109098CrossRefMATHMathSciNetGoogle Scholar
  34. KW.
    Kapustin A., Witten E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007) arXiv:hep-th/0604151MATHMathSciNetGoogle Scholar
  35. K.
    M. Kontsevich, Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians, vol. I, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 120–139; arXiv:alg-geom/9411018.Google Scholar
  36. K1.
    B. Kostant, Quantization and unitary representations. I. Prequantization, In: Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer-Verlag, 1970, pp. 87–208.Google Scholar
  37. K2.
    B. Kostant, Line bundles and the prequantized Schrödinger equation, In: Coll. Group Theoretical Methods in Physics, Centre de Physique Theorique, Marseille, 1972, pp. 81–85.Google Scholar
  38. M.
    S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math., 77 (1984), 101–116. S. Mukai, On the moduli space of bundles on K3 surfaces, I, In: Vector Bundles on Algebraic Varieties, Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413.Google Scholar
  39. Na.
    D. Nadler, Fukaya categories as categorical Morse homology, arXiv:1109.4848.Google Scholar
  40. NZ.
    D. Nadler and E. Zaslow, Constructible sheaves and the Fukaya category, arXiv: math/0604379.Google Scholar
  41. S.
    Souriau J.-M.: Quantification géométrique. Comm. Math. Phys. 1, 374–398 (1966)MATHMathSciNetGoogle Scholar
  42. SYZ.
    Strominger A., Yau S.-T., Zaslow E.: Mirror symmetry is T-duality. Nuclear Phys. B 479, 243–259 (1996)CrossRefMATHMathSciNetGoogle Scholar
  43. T.
    M. Thaddeus, Topology of the moduli space of stable bundles over a compact Riemann surface, 1990, unpublished.Google Scholar
  44. V.
    Verlinde E.: Fusion rules and modular transformations in 2D conformal field theory. Nuclear Phys. B 300, 360–376 (1988)CrossRefMATHMathSciNetGoogle Scholar
  45. Ve.
    M. Verbitsky, Hyperholomorphic sheaves and new examples of hyperkähler manifolds, In: Hyperkähler Manifolds, Math. Phys. (Somerville), 12, Int. Press, Somerville, MA, 1999, pp. 15–127; arXiv:alg-geom/9712012.Google Scholar
  46. Vo.
    D.A. Vogan, Jr., Singular unitary representations, In: Noncommutative Harmonic Analysis and Lie Groups, Marseille, 1980, Lecture Notes in Math., 880, Springer-Verlag, 1981, pp. 506–535.Google Scholar
  47. W.
    Witten E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121, 351–399 (1989)CrossRefMATHMathSciNetGoogle Scholar
  48. W1.
    Witten E.: On quantum gauge theories in two dimensions. Comm. Math. Phys. 141, 153–209 (1991)CrossRefMATHMathSciNetGoogle Scholar
  49. W2.
    E. Witten, Geometric Langlands and the equations of Nahm and Bogomolny, arXiv: 0905.4795.Google Scholar
  50. W3.
    E. Witten, A new look at the path integral of quantum mechanics, arXiv:1009.6032.Google Scholar
  51. Woo.
    N.M.J. Woodhouse, Geometric Quantization. 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1992.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2011

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Max-Planck-Institut für MathematikBonnGermany

Personalised recommendations