Japanese Journal of Mathematics

, Volume 5, Issue 1, pp 1–71 | Cite as

Arithmetic applications of the Langlands program

Article

Abstract.

This expository article is an introduction to the Langlands functoriality conjectures and their applications to the arithmetic of representations of Galois groups of number fields. Thanks to the work of a great many people, the stable trace formula is now largely established in a version adequate for proving Langlands functoriality in the setting of endoscopy. These developments are discussed in the first two sections of the article. The final section describes the compatible families of -adic Galois representations that can be attached to automorphic forms with the help of Shimura varieties. To illustrate the relevance of Langlands functoriality to number theory, the article concludes with a description of the Sato–Tate conjecture for elliptic modular forms, recently proved in joint work of Barnet-Lamb, Geraghty, Taylor, and the author.

Keywords and phrases:

Langlands program stable trace formula Arthur–Selberg trace formula fundamental lemma Galois representations Sato–Tate conjecture 

Mathematics Subject Classification (2010):

11F70 11F72 11F80 11G18 11R39 11S37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A88.
    J. Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc., 1 (1988), 501–554.MATHCrossRefMathSciNetGoogle Scholar
  2. A89.
    J. Arthur, The L 2-Lefschetz numbers of Hecke operators, Invent. Math., 97 (1989), 257–290.MATHCrossRefMathSciNetGoogle Scholar
  3. A02.
    J. Arthur, A stable trace formula. I. General expansions, J. Inst. Math. Jussieu, 1 (2002), 175–277.MATHCrossRefMathSciNetGoogle Scholar
  4. A05.
    J. Arthur, An introduction to the trace formula, In: Harmonic Analysis, the Trace Formula, and Shimura Varieties, (eds. J. Arthur, D. Ellwood and R. Kottwitz), Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005, pp. 1–263.Google Scholar
  5. A08.
    J. Arthur, Lectures at Banff International Research Station, August 2008, videos accessible at http://www.birs.ca/publications/workshop_videos/2008.htm.
  6. A10.
    J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, book to appear.Google Scholar
  7. AC.
    J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. of Math. Stud., 120, Princeton Univ. Press, 1989.Google Scholar
  8. B-L1.
    T. Barnet-Lamb, Potential automorphy for certain Galois representations to GL(2n), manuscript, 2008.Google Scholar
  9. B-L2.
    T. Barnet-Lamb, On the potential automorphy of certain odd-dimensional Galois representations, manuscript, 2009.Google Scholar
  10. B-LGG.
    T. Barnet-Lamb, T. Gee and D. Geraghty, The Sato–Tate conjecture for Hilbert modular forms, manuscript, 2009.Google Scholar
  11. BGHT.
    T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi–Yau varieties and potential automorphy II, manuscript, 2009.Google Scholar
  12. BC.
    J. Bellaïche and G. Chenevier, Families of Galois Representations and Selmer Groups, Astérisque, 324, Soc. Math. France, 2009.Google Scholar
  13. BR92.
    D. Blasius and J.D. Rogawski, Tate classes and arithmetic quotients of the two-ball, in [LR], 421–444.Google Scholar
  14. BR93.
    D. Blasius and J.D. Rogawski, Motives for Hilbert modular forms, Invent. Math., 114 (1993), 55–87.MATHCrossRefMathSciNetGoogle Scholar
  15. BW.
    A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, second ed., Math. Surveys Monogr., 67, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  16. BCDT.
    C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over \({\mathbb Q}\) : wild 3-adic exercises, J. Amer. Math. Soc., 14 (2001), 843–939.Google Scholar
  17. BT.
    F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5–251; II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math., 60 (1984), 197–376.Google Scholar
  18. Bump.
    D. Bump, Spectral theory and the trace formula, In: An Introduction to the Langlands Program, (eds. J. Bernstein and S. Gelbart), Birkhäuser Boston, Boston, MA, 2003, pp. 153–196.Google Scholar
  19. BG.
    K. Buzzard and T. Gee, The conjectural connections between automorphic representations and Galois representations, preliminary version, fall 2009.Google Scholar
  20. COGP.
    P. Candelas, X.C. de la Ossa, P.S. Green and L. Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds, Nuclear Phys. B, 359 (1991), 21–74.MATHCrossRefMathSciNetGoogle Scholar
  21. Ca.
    H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, In: p-adic Monodromy and the Birch and Swinnerton-Dyer conjecture, Contemp. Math., 165, Amer. Math. Soc., Providence, RI, 1994, pp. 213–237.Google Scholar
  22. Book1.
    L. Clozel, M. Harris, J.-P. Labesse and B.C. Ngô, eds., The Stable Trace Formula, Shimura Varieties, and Arithmetic Applications, Book 1, in preparation, preliminary versions available at http://fa.institut.math.jussieu.fr/node/4.
  23. Ch.
    P.-H. Chaudouard, Sur le transfert lisse des intégrales orbitales d’après Waldspurger, chapter in [Book1].Google Scholar
  24. ChL.
    P.-H. Chaudouard and G. Laumon, Le lemme fondamental pondéré. I. Constructions géométriques; II. Énoncés cohomologiques, http://www.math.u-psud.fr/~chaudou.
  25. Che.
    G. Chenevier, Une application des variétés de Hecke des groupes unitaires, in [Book 2].Google Scholar
  26. CH.
    G. Chenevier and M. Harris, Construction of automorphic Galois representations. II, chapter in [Book2].Google Scholar
  27. C90.
    L. Clozel, The fundamental lemma for stable base change, Duke Math. J., 61 (1990), 255–302.Google Scholar
  28. C91.
    L. Clozel, Représentations Galoisiennes associées aux représentations automorphes autoduales de GL(n), Inst. Hautes Études Sci. Publ. Math., 73 (1991), 97–145.Google Scholar
  29. CHL1.
    L. Clozel, M. Harris and J.-P. Labesse, Endoscopic transfer, chapter in [Book1].Google Scholar
  30. CHL2.
    L. Clozel, M. Harris and J.-P. Labesse, Construction of automorphic Galois representations. I, chapter in [Book1].Google Scholar
  31. CHT.
    L. Clozel, M. Harris and R. Taylor, Automorphy for some -adic lifts of automorphic mod Galois representations, Publ. Math. Inst. Hautes Études Sci., 108 (2008), 1–181.Google Scholar
  32. CL.
    L. Clozel and J.-P. Labesse, Orbital integrals and distributions, to appear in Shahidi volume.Google Scholar
  33. CHLo.
    R. Cluckers, T. Hales and F. Loeser, Transfer principle for the fundamental lemma, chapter in [Book1].Google Scholar
  34. CSS.
    G. Cornell, J. Silverman and G. Stevens, Modular Forms and Fermat’s Last Theorem, Springer-Verlag, 1998.Google Scholar
  35. DDT.
    H. Darmon, F. Diamond and R. Taylor, Fermat’s last theorem, In: Current Developments in Mathematics, 1995, Int. Press, Boston, 1994, pp. 1–154.Google Scholar
  36. DT.
    J.-F. Dat and N.D. Tuan, Lemme Fondamental pour les algèbres de Lie d’après Ngô Bao–Châu, chapter in [Book1].Google Scholar
  37. D68.
    P. Deligne, Formes Modulaires et Représentations l-adiques, Séminaire Bourbaki, 11 (1968-1969), Exp. 355.Google Scholar
  38. D71.
    P. Deligne, Travaux de Shimura, Séminaire Bourbaki, Exp. 389, Lecture Notes in Math., 244, Springer-Verlag, 1971.Google Scholar
  39. D.
    F. Diamond, The Taylor–Wiles construction and multiplicity one, Invent. Math., 128 (1997), 379–391.MATHCrossRefMathSciNetGoogle Scholar
  40. Di.
    L.V. Dieulefait, Langlands base change for GL(2), manuscript, 2009.Google Scholar
  41. Book2.
    L. Fargues and M. Harris, eds., The Stable Trace Formula, Shimura Varieties, and Arithmetic Applications, Book 2, in preparation.Google Scholar
  42. FaMa.
    L. Fargues and E. Mantovan, Variétés de Shimura, Espaces de Rapoport–Zink et Correspondances de Langlands Locales, Astérisque, 291, Soc. Math. France, 2004.Google Scholar
  43. FM.
    J.-M. Fontaine and B. Mazur, Geometric Galois representations, In: Elliptic Curves, Modular Forms, and Fermat’s Last Theorem, Hong Kong, 1993, Int. Press, Cambridge, MA, 1995, pp. 41–78.Google Scholar
  44. F.
    K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, version 2.0, preprint, 1999.Google Scholar
  45. Gee.
    T. Gee, The Sato–Tate conjecture for modular forms of weight 3, manuscript, 2009.Google Scholar
  46. GJ.
    S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. (4), 11 (1978), 471–542.Google Scholar
  47. Ge.
    D. Geraghty, Modularity lifting theorems for ordinary Galois representations, preprint, 2009.Google Scholar
  48. GHK.
    R. Guralnick, M. Harris and N.M. Katz, Automorphic realization of Galois representations, manuscript, 2008.Google Scholar
  49. GKM.
    M. Goresky, R. Kottwitz and R. MacPherson, Discrete series characters and the Lefschetz formula for Hecke operators, Duke Math. J., 89 (1997), 477–554.MATHCrossRefMathSciNetGoogle Scholar
  50. Gu.
    L. Guerberoff, Modularity lifting theorems for Galois representations of unitary type, thesis, Univ. Paris 7, in preparation.Google Scholar
  51. Hn05.
    T.J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, In: Harmonic Analysis, the Trace Formula, and Shimura Varieties, (eds. J. Arthur, D. Ellwood and R. Kottwitz), Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005, pp. 583–642.Google Scholar
  52. Ha93.
    T.C. Hales, A simple definition of transfer factors for unramified groups, In: Representation Theory of Groups and Algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, pp. 109–134.Google Scholar
  53. Ha95.
    T.C. Hales, On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math., 47 (1995), 974–994.MATHMathSciNetGoogle Scholar
  54. H1.
    M. Harris, Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications, In: Algebra, Arithmetic, and Geometry: Volume II: In Honor of Y.I. Manin, (eds. Y. Tschinkel and Yu. Zarhin), Birkhäuser Boston, Boston, MA, to appear.Google Scholar
  55. H2.
    M. Harris, An introduction to the stable trace formula, chapter in [Book1].Google Scholar
  56. H3.
    M. Harris, Galois representations, automorphic forms, and the Sato–Tate Conjecture, In: Proceedings of the Clay Research Conferences, 2007-8, to appear.Google Scholar
  57. HL.
    M. Harris and J.-P. Labesse, Conditional base change for unitary groups, Asian J. Math., 8 (2004), 653–684.MATHMathSciNetGoogle Scholar
  58. HST.
    M. Harris, N. Shepherd-Barron and R. Taylor, A family of Calabi–Yau varieties and potential automorphy, Ann. of Math. (2), in press.Google Scholar
  59. HT.
    M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. of Math. Stud., 151, Princeton Univ. Press, 2001.Google Scholar
  60. He.
    G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math., 139 (2000), 439–455.Google Scholar
  61. I.
    Y. Ihara, Hecke polynomials as congruence ζ-functions in elliptic modular case, Ann. of Math. (2), 85 (1967), 267–295.CrossRefMathSciNetGoogle Scholar
  62. JS.
    H. Jacquet and J.A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math., 103 (1981), 499–558; II, Amer. J. Math., 103 (1981), 777–815.Google Scholar
  63. JPSS.
    H. Jacquet, I.I. Piatetskii-Shapiro and J.A. Shalika, Rankin–Selberg convolutions, Amer. J. Math., 105 (1983), 367–464.Google Scholar
  64. Ka96.
    N.M. Katz, Rigid Local Systems, Ann. of Math. Stud., 139, Princeton Univ. Press, 1996.Google Scholar
  65. KaDw.
    N.M. Katz, Another look at the Dwork family, In: Algebra, Arithmetic, and Geometry: Volume II: In Honor of Y.I. Manin, (eds. Y. Tschinkel and Yu. Zarhin), Birkhäuser Boston, Boston, MA, to appear.Google Scholar
  66. KLR.
    C. Khare, M. Larsen and R. Ramakrishna, Transcendental -adic Galois representations, Math. Res. Lett., 12 (2005), 685–700.MATHMathSciNetGoogle Scholar
  67. Ki.
    H.H. Kim, Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2, J. Amer. Math. Soc., 16 (2003), 139--183.MATHCrossRefMathSciNetGoogle Scholar
  68. KS.
    H.H. Kim and F. Shahidi, Functorial products for GL2 ×  GL3 and the symmetric cube for GL2, Ann. of Math. (2), 155 (2002), 837–893.Google Scholar
  69. KiMF.
    M. Kisin, Moduli of finite flat group schemes and modularity, Ann. of Math. (2), 170 (2009), 1085–1180.CrossRefMATHMathSciNetGoogle Scholar
  70. KiFM.
    M. Kisin, The Fontaine–Mazur conjecture for GL 2, J. Amer. Math. Soc., 22 (2009), 641–690.CrossRefMathSciNetGoogle Scholar
  71. Ki2.
    M. Kisin, Modularity of 2-adic Barsotti–Tate representations, Invent. Math., 178 (2009), 587–634.MATHCrossRefMathSciNetGoogle Scholar
  72. K84.
    R.E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J., 51 (1984), 611–650.MATHCrossRefMathSciNetGoogle Scholar
  73. K86.
    R.E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann., 275 (1986), 365–399.MATHCrossRefMathSciNetGoogle Scholar
  74. K86a.
    R.E. Kottwitz, Base change for unit elements of Hecke algebras, Compositio Math., 60 (1986), 237–250.MathSciNetGoogle Scholar
  75. K88.
    R.E. Kottwitz, Tamagawa numbers, Ann. of Math. (2), 127 (1988), 629–646.CrossRefMathSciNetGoogle Scholar
  76. K90.
    R.E. Kottwitz, Shimura varieties and λ-adic representations, In: Automorphic Forms, Shimura Varieties, and L-functions, Vol. 1, Academic Press, New York, 1990, pp. 161–210.Google Scholar
  77. K92a.
    R.E. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties, Invent. Math., 108 (1992), 653–665.MATHCrossRefMathSciNetGoogle Scholar
  78. K92b.
    R.E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc., 5 (1992), 373–444.MATHCrossRefMathSciNetGoogle Scholar
  79. K99.
    R.E. Kottwitz, Transfer factors for Lie algebras., Represent. Theory, 3 (1999), 127–138.Google Scholar
  80. K05.
    R.E. Kottwitz, Harmonic analysis on reductive p-adic groups and Lie algebras, In: Harmonic Analysis, the Trace Formula, and Shimura Varieties, (eds. J. Arthur, D. Ellwood and R. Kottwitz), Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005, pp. 393–522.Google Scholar
  81. KSh.
    R.E. Kottwitz and D. Shelstad, Foundations of Twisted Endoscopy, Astérisque, 255, Soc. Math. France, 1999.Google Scholar
  82. Lab90.
    J.-P. Labesse, Fonctions élémentaires et lemme fondamental pour le changement de base stable, Duke Math. J., 61 (1990), 519–530.MATHCrossRefMathSciNetGoogle Scholar
  83. Lab99.
    J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque, 257 (1999), 1–116.Google Scholar
  84. Lab01.
    J.-P. Labesse, Nombres de Tamagawa des groupes réductifs quasi-connexes, Manuscripta Math., 104 (2001), 407–430.MATHCrossRefMathSciNetGoogle Scholar
  85. Lab04.
    J.-P. Labesse, Stable twisted trace formula: elliptic terms, J. Inst. Math. Jussieu, 3 (2004), 473–530.Google Scholar
  86. Lab09.
    J.-P. Labesse, Changement de base CM et séries discrètes, chapter in [Book1], with appendix by L. Clozel.Google Scholar
  87. LL.
    J.-P. Labesse and R.P. Langlands, L-indistinguishability for SL(2), Canad. J. Math., 31 (1979), 726–785.Google Scholar
  88. Lf.
    L. Lafforgue, Chtoucas de Drinfeld, formule des traces d’Arthur–Selberg et correspondance de Langlands, In: Proceedings of the International Congress of Mathematicians, Vol. I, Beijing, 2002, pp. 383–400.Google Scholar
  89. L70.
    R.P. Langlands, Problems in the theory of automorphic forms, In: Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer-Verlag, 1970, pp. 18–61.Google Scholar
  90. L76.
    R.P. Langlands, Some contemporary problems with origins in the Jugendtraum, In: Proc. Symp. Pure Math., 28, Amer. Math. Soc., 1976, pp. 401–418.Google Scholar
  91. L79.
    R.P. Langlands, Automorphic representations, Shimura varieties, and motives, Ein Märchen, In: Proc. Symp. Pure Math., 33, Part 2, Amer. Math. Soc., 1979, pp. 205–246.Google Scholar
  92. L80.
    R.P. Langlands, Base Change for GL(2), Ann. of Math. Stud., 96, Princeton Univ. Press, 1980.Google Scholar
  93. L83.
    R.P. Langlands, Les débuts d’une Formule des Traces Stables, Publ. Math. Univ. Paris VII, 13, Univ. Paris VII, 1983.Google Scholar
  94. L04.
    R.P. Langlands, Beyond endoscopy, In: Contributions to Automorphic Forms, Geometry, and Number Theory: A Volume in Honor of J. Shalika, (eds. H. Hida, D. Ramakrishnan and F. Shahidi), Johns Hopkins Univ. Press, 2004, pp. 611–698.Google Scholar
  95. L05.
    R.P. Langlands, Un nouveau point de repère dans la théorie des formes automorphes, http://publications.ias.edu/rpl.
  96. LR.
    R.P. Langlands and D. Ramakrishnan, eds., The Zeta Functions of Picard Modular Surfaces, Univ. de Montréal, Centre de Recherches Mathé matiques, Montreal, 1992.Google Scholar
  97. LRa.
    R.P. Langlands and M. Rapoport, Shimuravarietäten und Gerben, J. Reine Angew. Math., 378 (1987), 113–220.MATHMathSciNetGoogle Scholar
  98. LS87.
    R.P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann., 278 (1987), 219–271.MATHCrossRefMathSciNetGoogle Scholar
  99. LS90.
    R.P. Langlands and D. Shelstad, Descent for transfer factors, In: The Grothendieck Festschrift, Vol. II, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990, pp. 485–563.Google Scholar
  100. LN.
    G. Laumon and B.C. Ngô, Le lemme fondamental pour les groupes unitaires, Ann. of Math. (2), 168 (2008), 477–573.Google Scholar
  101. Mz89.
    B. Mazur, Deforming Galois representations, In: Galois Groups Over \({\mathbb{Q}}\) , (eds. Y. Ihara, K. Ribet and J.-P. Serre), Springer-Verlag, 1989, pp. 385–437.Google Scholar
  102. Mz08.
    B. Mazur, Finding meaning in error terms, Bull. Amer. Math. Soc., 45 (2008), 185–228.MATHCrossRefMathSciNetGoogle Scholar
  103. Ml05.
    J.S. Milne, Introduction to Shimura varieties, In: Harmonic Analysis, the Trace Formula, and Shimura Varieties, (eds. J. Arthur, D. Ellwood and R. Kottwitz), Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005, pp. 265–378.Google Scholar
  104. Mi.
    A. Minguez, Unramified representations of unitary groups, chapter in [Book1].Google Scholar
  105. M07.
    C. Mœglin, Classification et changement de base pour les séries discrètes des groupes unitaires p-adiques, Pacific J. Math., 233 (2007), 159–204.Google Scholar
  106. M09.
    C. Mœglin, Paquets d’Arthur discrets pour un groupe classique p-adique, In: Automorphic Forms and L-functions II. Local Aspects, Proceedings of the Conference in Honor of S. Gelbart, (eds. D. Ginzburg, E. Lapid and D. Soudry), Contemp. Math., 489, Amer. Math. Soc., 2009, pp. 179–258.Google Scholar
  107. M09a.
    C. Mœglin, Multiplicité 1 dans les paquets d’Arthur, In: Proceedings of the Conference in Honor of F. Shahidi, to appear.Google Scholar
  108. Mo.
    S. Morel, Étude de la Cohomologie de Certaines Variétés de Shimura Non Compactes, Ann. of Math. Stud., in press.Google Scholar
  109. MB.
    L. Moret-Bailly, Groupes de Picard et problèmes de Skolem. II, Ann. Sci. École Norm. Sup. (4), 22 (1989), 181–194.Google Scholar
  110. N06.
    B.C. Ngô, Fibration de Hitchin et endoscopie, Invent. Math., 164 (2006), 399–453.Google Scholar
  111. N2.
    B.C. Ngô, Le lemme fondamental pour les algèbres de Lie, in press.Google Scholar
  112. N3.
    B.C. Ngô, Decomposition theorem and abelian fibration, to appear in [Book1].Google Scholar
  113. Rk.
    R. Ramakrishna, Infinitely ramified Galois representations, Ann. of Math. (2), 151 (2000), 793–815.Google Scholar
  114. Ra.
    D. Ramakrishnan, Modularity of the Rankin–Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2), 152 (2000), 45–111.Google Scholar
  115. Rp.
    M. Rapoport, A guide to the reduction modulo p of Shimura varieties, In: Automorphic Forms. I, Astérisque, 298, Soc. Math. France, 2005, pp. 271–318.Google Scholar
  116. RZ.
    M. Rapoport and T. Zink, Period Spaces for p-divisible Groups, Ann. of Math. Stud., 141, Princeton Univ. Press, 1996.Google Scholar
  117. R.
    J.D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Ann. of Math. Stud., 123, Princeton Univ. Press, 1990.Google Scholar
  118. S68.
    J.-P. Serre, Abelian -adic Representations and Elliptic Curves, Benjamin, New York, 1968.Google Scholar
  119. S94.
    J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations -adiques, In: Motives, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 377–400.Google Scholar
  120. Sh.
    F. Shahidi, On certain L-functions, Amer. J. Math., 103 (1981), 297–355.MATHCrossRefMathSciNetGoogle Scholar
  121. Shel79.
    D. Shelstad, Characters and inner forms of a quasi-split group over \({\mathbb R}\) Compositio Math., 39 (1979), 11–45.Google Scholar
  122. Shel82.
    D. Shelstad, L-indistinguishability for real groups, Math. Ann., 259 (1982), 385–430.MATHCrossRefMathSciNetGoogle Scholar
  123. Sh66.
    G. Shimura, Moduli of abelian varieties and number theory, In: Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., 9, Amer. Math. Soc., Providence, RI, 1966, pp. 312–332.Google Scholar
  124. Sh70.
    G. Shimura, On arithmetic automorphic functions. In: Actes du Congrès International des Mathématiciens, Nice, 1970, Tome 2, pp. 343–348.Google Scholar
  125. ST.
    G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties and its Applications to Number Theory, Publ. Math. Soc. Japan, 6, Math. Soc. Japan, Tokyo, 1961.Google Scholar
  126. Shin.
    S.-W. Shin, Galois representations arising from some compact Shimura varieties, Ann. of Math. (2), in press.Google Scholar
  127. SW.
    C. Skinner and A. Wiles, Residually reducible representations and modular forms, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 5–126.Google Scholar
  128. SnW.
    A. Snowden and A. Wiles, Bigness in compatible systems, manuscript, 2008.Google Scholar
  129. So.
    C.M. Sorensen, A patching lemma, to appear in [Book2].Google Scholar
  130. T89.
    R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math., 98 (1989), 265–280.MATHCrossRefMathSciNetGoogle Scholar
  131. T02.
    R. Taylor, Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu, 1 (2002), 125–143.Google Scholar
  132. T02a.
    R. Taylor, Galois representations, In: Proceedings of ICM 2002, Vol. I, Higher Ed. Press, pp. 449–474.Google Scholar
  133. T06.
    R. Taylor, On the meromorphic continuation of degree two L-functions, Doc. Math., 2006 (2006), Extra vol., 729–779.Google Scholar
  134. T08.
    R. Taylor, Automorphy for some -adic lifts of automorphic mod Galois representations. II, Publ. Math. Inst. Hautes Études Sci., 108 (2008), 183–239.Google Scholar
  135. TW.
    R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), 141 (1995), 553–572.MATHCrossRefMathSciNetGoogle Scholar
  136. W97.
    J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math., 105 (1997), 153–236.MATHCrossRefMathSciNetGoogle Scholar
  137. W01.
    J.-L. Waldspurger, Intégrales Orbitales Nilpotentes et Endoscopie pour les Groupes Classiques Non Ramifiés, Astérisque, 269, Soc. Math. France, 2001.Google Scholar
  138. W06.
    J.-L. Waldspurger, Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu, 5 (2006), 423–525.MATHCrossRefMathSciNetGoogle Scholar
  139. W08.
    J.-L. Waldspurger, L’endoscopie Tordue N’est Pas si Tordue, Mem. Amer. Math. Soc., 194, Amer. Math. Soc., 2008.Google Scholar
  140. W09.
    J.-L. Waldspurger, Endoscopie et changement de caractéristique: intégrales orbitales pondérées, Ann. Inst. Fourier, 59 (2009), 1753–1818.Google Scholar
  141. W.
    J.-L. Waldspurger, A propos du lemme fondamental tordu, chapter in [Book1].Google Scholar
  142. Wi88.
    A. Wiles, On ordinary λ-adic representations associated to modular forms, Invent. Math., 94 (1988), 529–573.Google Scholar
  143. Wi95.
    A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), 141 (1995), 443–551.MATHCrossRefMathSciNetGoogle Scholar
  144. Y.
    H. Yoshida, On an analogue of the Sato conjecture, Invent. Math. 19 (1973), 261–277.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2010

Authors and Affiliations

  1. 1.UFR de Mathématiques, Université Paris 7Paris cedex 05France
  2. 2.Institut des Mathématiques de Jussieu, U.M.R. 7586 du CNRS. Membre, Institut Universitaire de FranceParis cedex 05France

Personalised recommendations