Japanese Journal of Mathematics

, Volume 4, Issue 1, pp 27–45 | Cite as

Ricci curvature and measures

Article

Abstract.

In the last thirty years three a priori very different fields of mathematics, optimal transport theory, Riemannian geometry and probability theory, have come together in a remarkable way, leading to a very substantial improvement of our understanding of what may look like a very specific question, namely the analysis of spaces whose Ricci curvature admits a lower bound. The purpose of these lectures is, starting from the classical context, to present the basics of the three fields that lead to an interesting generalisation of the concepts, and to highlight some of the most striking new developments.

Keywords and phrases:

Ricci curvature geometry of spaces of measures Bakry–Émery estimate optimal transport theory lower bounds on curvature Wasserstein distances metric measured spaces Gromov–Hausdorff topology entropy functionals 

Mathematics Subject Classification (2000):

58J65 53C21 49J20 28D05 90B06 60E15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Appell, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus, Mémoires présentés par divers savants à l’Académie des Sciences de l’Institut de France, 29 (1887), 1–208.MathSciNetGoogle Scholar
  2. 2.
    D. Bakry, L’hypercontractivité et son utilisation en théorie des semi-groupes, In: Lectures on Probability Theory, École d’Été de Probabilités de Saint-Flour, Lecture Notes in Math., 1581, Springer-Verlag, 1994, pp. 1–114.Google Scholar
  3. 3.
    D. Bakry and M. Émery, Diffusions hypercontractives, In: Séminaire de Probabilités XIX, Lecture Notes in Math., 1123, Springer-Verlag, 1985, pp. 177–206.Google Scholar
  4. 4.
    P. Bérard, G. Besson and S. Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal., 4 (1994), 373–398.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J.-P. Bourguignon, Ricci curvature and Einstein metrics, In: Global Differential Geometry and Global Analysis, Lecture Notes in Math., 838, Springer-Verlag, 1981, pp. 42–63.Google Scholar
  6. 6.
    J.-P. Bourguignon, Invariants intégraux fonctionnels pour des équations aux dérivées partielles d’origine géométrique, In: Differential Geometry, Peñíscola, 1985, Lecture Notes in Math., 1209, Springer-Verlag, 1986, pp. 100–108.Google Scholar
  7. 7.
    J.-P. Bourguignon, L’équation de la chaleur associée à la courbure de Ricci, In: Séminaire Bourbaki, Vol. 1985/86, Exposé 653, Astérisque, 145-146, 1987, pp. 45–61.Google Scholar
  8. 8.
    Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375–417.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), 406–480; II, ibid., 54 (2000), 13–35; III, ibid., 54 (2000), 37–74.Google Scholar
  10. 10.
    X.-X. Chen and W.-Y. He, The space of volume forms, Univ. Wisconsin, Madison, preprint, 2008.Google Scholar
  11. 11.
    E.B. Christoffel, Über die transformation der homogenen differentialausdrücke zweiten grades, J. Reine Angew. Math., 70 (1869), 46–70.Google Scholar
  12. 12.
    A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437–443.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, third ed., Universitext, Springer-Verlag, 2004.Google Scholar
  14. 14.
    W. Gangbo, An elementary proof of the polar factorization of vector-valued functions, Arch. Rational Mech. Anal., 128 (1994), 381–399.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, based on the 1981 French original, Progr. Math., 152, Birkhäuser Boston, Boston, MA, 1999.Google Scholar
  16. 16.
    R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29 (1998), 1–17.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    E. Kähler, Über eine bemerkenswerte Hermitesche Metrik, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 173–186.CrossRefGoogle Scholar
  18. 18.
    L.V. Kantorovich, On the translocation of masses, Dokl. Akad. Nauk. USSR (N.S.), 37 (1942), 199–201; English translation, J. Math. Sci., 133 (2006), 1381–1382.Google Scholar
  19. 19.
    M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, In: Séminaire de Probabilités XXXIII, Lecture Notes in Math., Springer-Verlag, 1999, pp. 120–216.Google Scholar
  20. 20.
    J. Lott, Some geometric properties of the Bakry– Émery–Ricci tensor, Comment. Math. Helv., 78 (2003), 865–883.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Lott, Optimal transport and Ricci curvature for metric-measure spaces, In: Metric and Comparison Geometry, (eds. J. Cheeger and K. Grove), Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, pp. 229–257.Google Scholar
  22. 22.
    J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), to appear (2008).Google Scholar
  23. 23.
    X.-N. Ma, N.S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151–183.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    T. Mabuchi, K-energy maps integrating Futaki invariants, Tohuku Math. J. (2), 38 (1986), 575–593.Google Scholar
  25. 25.
    R.J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., 80 (1995), 309–323.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    R.J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589–608.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    G. Monge, Mémoire sur la théorie des déblais et des remblais, Mém. Math. Phys. Acad. Royale Sci., 1781, 666–704Google Scholar
  28. 28.
    S.-I. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, to appear.Google Scholar
  29. 29.
    S.-I. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math., to appear.Google Scholar
  30. 30.
    S.-I. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., to appear.Google Scholar
  31. 31.
    F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101–174.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361–400.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.Google Scholar
  34. 34.
    M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923–940.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    G. Ricci-Curbastro, Direzioni et invarianti principali in una varietà qualunque, Atti del Real Inst. Venezio, 63 (1904), 1233–1239.Google Scholar
  36. 36.
    K.-T. Sturm, Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl. (9), 84 (2005), 149–168.Google Scholar
  37. 37.
    K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65–131; II, ibid., 196 (2006), 133–177.Google Scholar
  38. 38.
    N.S. Trudinger and X.-J. Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations, 13 (2001), 19–31.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    C. Villani, Optimal transportation, dissipative PDE’s and functional inequalities, In: Optimal Transportation and Applications, Martina Franca, 2001, Lecture Notes in Math., 1813, Springer-Verlag, 2003, pp. 53–89.Google Scholar
  40. 40.
    C. Villani, Optimal Transport, Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009.Google Scholar
  41. 41.
    G.-F. Wei, Manifolds with a lower Ricci curvature bound, In: Metric and Comparison Geometry, (eds. J. Cheeger and K. Grove), Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, 203–227.Google Scholar
  42. 42.
    G.-F. Wei and W. Wylie, Comparison geometry for the Bakry– Émery Ricci tensor, Proc. Int. Congress Chinese Mathematicians, to appear (2007).Google Scholar
  43. 43.
    S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Comm. Pure Appl. Math., 31 (1978), 339–441.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2009

Authors and Affiliations

  1. 1.Centre national de la recherche scientifique–Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance

Personalised recommendations