Japanese Journal of Mathematics

, Volume 4, Issue 1, pp 63–93 | Cite as

Instanton partition functions and M-theory



We discuss instanton partition functions in various spacetime dimensions. These partition functions capture some information about the spectrum of the supersymmetric gauge theories and their low-energy dynamics. Some of these theories can be defined microscopically only through string theory. Remarkably, they even know about the M-theory. Our conjectures include the identities between the generalization of the MacMahon formula and the character of M-theory, compactified down to 0 + 1 dimension.

Keywords and phrases:

instantons supersymmetry gauge theory string theory M-theory random partitions generating functions 

Mathematics Subject Classification (2000):

05A15 05A19 81T13 81T30 81T45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Göttsche, H. Nakajima and K. Yoshioka, K-theoretic Donaldson invariants via instanton counting, e-print, arXiv:math/0611945.Google Scholar
  2. 2.
    L. Göttsche, H. Nakajima and K. Yoshioka, Instanton counting and Donaldson invariants, e-print, arXiv:math/0606180.Google Scholar
  3. 3.
    H. Nakajima and K. Yoshioka, Instanton counting on blowup. II. K-theoretic partition function, e-print, arXiv:math/0505553.Google Scholar
  4. 4.
    H. Nakajima and K. Yoshioka, Lectures on instanton counting, e-print, arXiv:math/0311058.Google Scholar
  5. 5.
    T. Graber and R. Pandharipande, Localization of virtual classes, e-print, arXiv:alggeom/9708001.Google Scholar
  6. 6.
    M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307–347.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    N. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek, Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys., 108 (1987), 535–589 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, e-print, arXiv:hep-th/0312022.Google Scholar
  9. 9.
    S. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, e-print, arXiv:hep-th/9609239.Google Scholar
  10. 10.
    A. Losev, N. Nekrasov, and S.L. Shatashvili, Freckled instantons in two and four dimensions, e-print, arXiv:hep-th/9911099; Classical Quantum Gravity, 17 (2000), 1181–1187Google Scholar
  11. 11.
    A. Losev, N. Nekrasov and S.L. Shatashvili, The freckled instantons, In: The Many Faces of the Superworld, (ed. M.A. Shifman), Yuri Golfand memorial volume, pp. 453–475; e-print, arXiv:hep-th/9908204.Google Scholar
  12. 12.
    D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory I, e-print, arXiv:math/0312059; II, e-print, arXiv: math/0406092.Google Scholar
  13. 13.
    G. Moore, N. Nekrasov and S. Shatashvili, D-particle bound states and generalized instantons, e-print, arXiv:hep-th/9803265; Comm. Math. Phys., 209 (2000), 77–95.Google Scholar
  14. 14.
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, e-print, arXiv:hep-th/9609219.Google Scholar
  15. 15.
    N. Nekrasov, Seiberg–Witten prepotential from instanton counting, e-print, arXiv:hepth/0206161, arXiv:hep-th/0306211.Google Scholar
  16. 16.
    N. Nekrasov and A. Okounkov, Seiberg–Witten theory and random partitions, e-print, arXiv:hep-th/0306238.Google Scholar
  17. 17.
    N. Nekrasov and A. Okounkov, unpublished result from the first Simons Workshop, 2004.Google Scholar
  18. 18.
    N. Nekrasov and S. Shatashvili, Supersymmetric vacua and quantum integrability, to appear.Google Scholar
  19. 19.
    E. Witten, Topological sigma models, Comm. Math. Phys., 118 (1988), 411–449.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    E. Witten, Topological quantum field theory, Comm. Math. Phys., 117 (1988), 353–386.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    E. Witten, Phases of \(\mathcal {N}\) = 2 theories in two dimensions, e-print, arrXiv:hep-th/9301042; Nuclear Phys. B, 403 (1993), 159–222Google Scholar
  22. 22.
    E. Witten, String theory dynamics in various dimensions, e-print, arXiv:hep-th/9503124; Nuclear Phys. B, 443 (1995), 85–126.Google Scholar
  23. 23.
    E.Witten, BPS bound states of D0–D6 and D0–D8 systems in a B-field, e-print, arXiv:hepth/0012054.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2009

Authors and Affiliations

  1. 1.Institut des Hautes Études Scientifiques, Le Bois-MarieBures-sur-YvetteFrance

Personalised recommendations