Japanese Journal of Mathematics

, Volume 3, Issue 2, pp 185–214 | Cite as

From the sixteenth Hilbert problem to tropical geometry

Article

Abstract.

Hilbert’s problem on the topology of algebraic curves and surfaces (the sixteenth problem from the famous list presented at the second International Congress of Mathematicians in 1900) was difficult to formulate. The way it was formulated made it difficult to anticipate that it has been solved. In the first part of the paper the history of the sixteenth Hilbert problem and its solution is presented. The second part of the paper traces one of the ways in which tropical geometry emerged.

Keywords and phrases:

sixteenth Hilbert problem real algebraic curve Gudkov’s conjecture patchworking tropical geometry idempotent mathematics 

Mathematics Subject Classification(2000):

14P25 (primary) 14N10 (secondary) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Arnold, The situation of ovals of real plane algebraic curves, the involutions of four-dimensional smooth manifolds, and the arithmetic of integral quadratic forms, Funkcional. Anal. i Priložen., 5 (1971), 1–9Google Scholar
  2. 2.
    T. Fidler, New congruences in the topology of real plane algebraic curves, Dokl. Akad. Nauk SSSR, 270 (1983), 56–58MathSciNetGoogle Scholar
  3. 3.
    D.A. Gudkov, Construction of a new series of M-curves. (Russian), Dokl. Akad. Nauk SSSR, 200 (1971), 1269–1272MathSciNetGoogle Scholar
  4. 4.
    D.A. Gudkov, Construction of a curve of degree 6 of type \(\frac{5}{1} 5\). (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 3 (1973), 28–36MathSciNetGoogle Scholar
  5. 5.
    D.A. Gudkov and A.D. Krakhnov, The periodicity of the Euler characteristic of real algebraic M − 1-manifolds. (Russian), Funkcional. Anal. i Priložen., 7 (1973), 15–19Google Scholar
  6. 6.
    D.A. Gudkov and G.A. Utkin, The topology of curves of degree 6 and surfaces of degree 4. (Russian), Uchen. Zap. Gorkov. Univ., 87, 1969; English transl., Amer. Math. Soc. Transl., 112, 1978.Google Scholar
  7. 7.
    A. Harnack, Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann., 10 (1876), 189–199CrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Hilbert, Ueber die reellen Züge algebraischer Curven, Math. Ann., 38 (1891), 115–138CrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Hilbert, Mathematische probleme. (German), Arch. Math. Phys., 3 (1901), 213–237; English transl., http://www.ams.org/bull/2000-37-04/S0273-0979-00-00881-8.Google Scholar
  10. 10.
    Yu. Ilyashenko, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc., 39 (2002), 301–354MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I.V. Itenberg, Contre-examples à la conjecture de Ragsdale, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 277–282MATHMathSciNetGoogle Scholar
  12. 12.
    I. Itenberg and O. Viro, Patchworking algebraic curves disproves the Ragsdale conjecture, Math. Intelligencer, 18 (1996), no. 4, 19–28Google Scholar
  13. 13.
    V.M. Kharlamov, The maximal number of components of a 4th degree surface in \({\mathbb{R}}P^3\) , Funkcional. Anal. i Priložen., 6 (1972), no. 4, p. 101Google Scholar
  14. 14.
    V.M. Kharlamov, New congruences for the Euler characteristic of real algebraic manifolds. (Russian), Funkcional. Anal. i Priložen., 7 (1973), 74–78Google Scholar
  15. 15.
    V.M. Kharlamov, A generalized Petrovskiǐ inequality. (Russian), Funkcional. Anal. i Priložen., 8 (1974), no. 2, 50–56; English transl., Funct. Anal. Appl., 8 (1974), 132–137.Google Scholar
  16. 16.
    V.M. Kharlamov, Additional congruences for the Euler characteristic of even-dimensional real algebraic varieties. (Russian), Funkcional. Anal. i Priložen., 9 (1975), no. 2, 51–60Google Scholar
  17. 17.
    V.M. Kharlamov, Topological types of nonsingular surfaces of degree 4 in \({{\mathbb{R}} P}^3\) . (Russian), Funkcional. Anal. i Priložen., 10 (1976), 55–68; English transl., Funct. Anal. Appl., 10 (1976), 295–305.Google Scholar
  18. 18.
    V.M. Kharlamov, Isotopic types of nonsingular surfaces of degree 4 in \({{\mathbb{R}} P}^3\) . (Russian), Funkcional. Anal. i Priložen., 12 (1978), 86–87MATHGoogle Scholar
  19. 19.
    V.M. Kharlamov, Rigid classification up to isotopy of real plane curves of degree 5, Funktsional. Anal. i Prilozhen., 15 (1981), no. 1, 88–89; English transl., Funct. Anal. Appl., 15 (1981), 73–74.Google Scholar
  20. 20.
    V.M. Kharlamov, On the classification of nonsingular surfaces of degree 4 in \({\mathbb{R}}P^3\) with respect to rigid isotopies, Funktsional. Anal. i Prilozhen., 18 (1984), 49–56CrossRefMathSciNetGoogle Scholar
  21. 21.
    F. Klein, Ueber eine neue Art von Riemann’schen Flächen, Math. Ann., 10 (1876), 398–416CrossRefMathSciNetGoogle Scholar
  22. 22.
    G.L. Litvinov and V.P. Maslov, The correspondence principle for idempotent calculus and some computer applications, In: Idempotency, (ed. J. Gunawardena), Publ. Newton Inst., 11, Cambridge Univ. Press, Cambridge, 1998, pp. 420–443; preprint, IHES/M/95/33, Inst. Hautes Études Sci., 1995; math.GM/0101021.Google Scholar
  23. 23.
    A. Marin, Quelques remarques sur les courbes algébriques planes réelles, Publ. Math. Univ. Paris VII, 9, 1980, pp. 51–68; Russian transl., V poiskakh ytrachennoj topologii, Mir, 1989, pp. 162–172.Google Scholar
  24. 24.
    G. Mikhalkin, The complex separation of real surfaces and extensions of Rokhlin congruence, Invent. Math., 118 (1994), 197–222; math.AG/9206009MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    G. Mikhalkin, Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris, 336 (2003), 629–634MATHMathSciNetGoogle Scholar
  26. 26.
    G. Mikhalkin, Enumerative tropical algebraic geometry in \({\mathbb{R}}^2\), J. Amer. Math. Soc., 18 (2005), 313–377MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    G. Mikhalkin, Tropical geometry and its applications, Proceedings of the Madrid ICM, 2006, math.AG/06011041.Google Scholar
  28. 28.
    V.V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 111–177; English transl., Math. USSR-Izv., 14 (1980), 103–167.Google Scholar
  29. 29.
    V.V. Nikulin, Involutions of integer quadratic forms and their applications to real algebraic geometry. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 109–188; English transl., Math. USSR-Izv., 22 (1984), 99–172.Google Scholar
  30. 30.
    S.Yu. Orevkov, Classification of flexible M-curves of degree 8 up to isotopy, Geom. Funct. Anal., 12 (2002), 723–755MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    V.A. Rokhlin, Proof of a conjecture of Gudkov, Funkcional. Anal. i Priložen., 6 (1972), no. 2, 62–64Google Scholar
  32. 32.
    V.A. Rokhlin, Congruences modulo 16 in Hilbert’s sixteenth problem. (Russian), Funkcional. Anal. i Priložen., 6 (1972), no. 4, 58–64Google Scholar
  33. 33.
    V.A. Rokhlin, Complex topological characteristics of real algebraic curves. (Russian), Uspekhi Mat. Nauk, 33 (1978), 77–89; English transl., Russian Math. Surveys, 33 (1978), 85–98.Google Scholar
  34. 34.
    O.Ya. Viro, Curves of degree 7, curves of degree 8 and the Ragsdale conjecture. (Russian), Dokl. Akad. Nauk SSSR, 254 (1980), 1305–1310; English transl., Soviet Math. Dokl., 22 (1980), 566–570.Google Scholar
  35. 35.
    O.Ya. Viro, Planar real curves of degree 7 and 8: new prohibitions. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 1135–1150; English transl., Math. USSR-Izv., 23 (1984), 409–422.Google Scholar
  36. 36.
    O.Ya. Viro, Gluing algebraic hypersurfaces and constructions of curves. (Russian), Tezisy Leningradskoj Mezhdunarodnoj Topologicheskoj Konferentsii 1982, Nauka, 1983, pp. 149–197.Google Scholar
  37. 37.
    O.Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7, Lecture Notes in Math., 1060, Springer-Verlag, 1984, pp. 187–200.Google Scholar
  38. 38.
    O.Ya. Viro, Achievements in the topology of real algebraic varieties in the last six years. (Russian), Uspekhi Mat. Nauk, 41 (1986), 45–67; English transl., Russian Math. Surveys, 41 (1986), 55–82.Google Scholar
  39. 39.
    O.Ya. Viro, Some integral calculus based on Euler characteristic, Lecture Notes in Math., 1346, Springer-Verlag, 1988, pp. 127–138.Google Scholar
  40. 40.
    O.Ya. Viro, Real plane algebraic curves: constructions with controlled topology. (Russian), Algebra i Analiz, 1 (1989), 1–73; English transl., Leningrad Math. J., 1 (1990), 1059–1134.Google Scholar
  41. 41.
    O. Viro, Dequantization of real algebraic geometry on logarithmic paper, In: European Congress of Mathematics, vol. I, Barcelona, 2000, Birkhäuser, Basel, 2001, pp. 135–146; math.AG/0005163.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2008

Authors and Affiliations

  1. 1.Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia
  2. 2.Institute for Mathematical SciencesStony Brook UniversityStony BrookUSA

Personalised recommendations