Japanese Journal of Mathematics

, Volume 3, Issue 1, pp 49–92 | Cite as

Do-it-yourself computational astronomy

Hardwares, algorithms, softwares, and sciences
Special Feature: The 3rd Takagi Lectures
  • 93 Downloads

Abstract

We overview our GRAPE (GRAvity PipE) and GRAPE-DR project to develop dedicated computers for astrophysical N-body simulations. The basic idea of GRAPE is to attach a custom-build computer dedicated to the calculation of gravitational interaction between particles to a general-purpose programmable computer. By this hybrid architecture, we can achieve both a wide range of applications and very high peak performance. GRAPE-6, completed in 2002, achieved the peak speed of 64 Tflops. The next machine, GRAPE-DR, will have the peak speed of 2 Pflops and will be completed in 2008.

We discuss the physics of stellar systems, evolution of general-purpose high-performance computers, our GRAPE and GRAPE-DR projects and issues of numerical algorithms.

Keywords and phrases

computational science special-purpose computer numerical algorithms 

Mathematics Subject Classification (2000)

85-08 68Mxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Aarseth, Dynamical evolution of clusters of galaxies, I, Mon. Not. R. Astron. Soc., 126 (1963), 223–255.Google Scholar
  2. 2.
    S.J. Aarseth, Direct methods for N-body simulations, In: Multiple Time Scales, (eds. J.U. Blackbill and B.I. Cohen), Academic Press, New York, 1985, pp. 377–418.Google Scholar
  3. 3.
    S.J. Aarseth, Gravitational N-Body Simulations, Cambridge Univ. Press, Cambridge, November 2003, p. 430.Google Scholar
  4. 4.
    V.A. Antonov, Most probable phase distribution in spherical star systems and conditions for its existence, Vest. Leningrad Univ., 7 (1962), p. 135.Google Scholar
  5. 5.
    J.H. Applegate, M.R. Douglas, Y. Gursel, P. Huner, C.L. Seitz and G.J. Sussman, A digital orrery, IEEE Trans. Comput., 34 (1985), 822–831.CrossRefGoogle Scholar
  6. 6.
    J. Barnes and P. Hut, A hiearchical O(N log N) force-calculation algorithm, Nature, 324 (1986), 446–449.CrossRefGoogle Scholar
  7. 7.
    S. Chandrasekhar, Principles of Stellar Dynamics, Dover, New York, 1943.MATHGoogle Scholar
  8. 8.
    H. Cohn, Late core collapse in star clusters and the gravothermal instability, Astrophys. J., 242 (1980), 765–771.CrossRefGoogle Scholar
  9. 9.
    T. Fukushige, J. Makino and A. Kawai, GRAPE-6A: A single-card GRAPE-6 for parallel PC-GRAPE cluster systems, Publ. Astron. Soc. Japan, 57 (2005), 1009–1021.Google Scholar
  10. 10.
    L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), 325–348.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. Hachisu, Y. Nakada, K. Nomoto and D. Sugimoto, Gravothermal catastrophe of finite amplitude, Progr. Theoret. Phys., 60 (1978), 393–402.CrossRefGoogle Scholar
  12. 12.
    I. Hachisu and D. Sugimoto, Gravothermal catastrophe and negative specific heat of self-gravitating systems, Progr. Theoret. Phys., 60 (1978), 123–135.CrossRefGoogle Scholar
  13. 13.
    T. Hamada, T. Fukuishige and J. Makino, Pgpg: An automatic generator of pipeline design for programmable grape systems, Publ. Astron. Soc. Japan, 57 (2005), 799–813.Google Scholar
  14. 14.
    M. Henon, Monte-carlo models of star clusters, Astrophys. Space Sci., 13 (1971), 284–299.CrossRefGoogle Scholar
  15. 15.
    L. Hernquist, Vectorization of tree traversals, J. Comput. Phys., 87 (1990), 137–147.MATHCrossRefGoogle Scholar
  16. 16.
    R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles, IOP, Bristol, 1988.MATHGoogle Scholar
  17. 17.
    P. Hut, J. Makino and S. McMillan, Building a better leapfrog, Astrophys. J. Lett., 443 (1995), L93–L96.CrossRefGoogle Scholar
  18. 18.
    T. Ito, J. Makino, T. Ebisuzaki and D. Sugimoto, A special-purpose N-body machine GRAPE-1, Comput. Phys. Comm., 60 (1990), 187–194.MATHCrossRefGoogle Scholar
  19. 19.
    T. Ito and K. Tanikawa, Long-term integrations and stability of planetary orbits in our Solar system, Mon. Not. R. Astron. Soc., 336 (2002), 483–500.CrossRefGoogle Scholar
  20. 20.
    D. Jewitt and J. Luu, Discovery of the candidate Kuiper belt object 1992 QB1, Nature, 362 (1993), 730–732.CrossRefGoogle Scholar
  21. 21.
    A. Kawai, T. Fukushige, J. Makino and M. Taiji, GRAPE-5: A special-purpose computer for N-body simulations, Publ. Astron. Soc. Japan, 52 (2000), 659–676.Google Scholar
  22. 22.
    A. Kawai, J. Makino and T. Ebisuzaki, Performance analysis of high-accuracy tree code based on the pseudoparticle multipole method, Astrophys. J. Suppl. Ser., 151 (2004), 13–33.CrossRefGoogle Scholar
  23. 23.
    H. Kinoshita and H. Nakai, Long-term behavior of the motion of Pluto over 5.5 billion years, Earth, Moon, and Planets, 72 (1996), 165–173.CrossRefGoogle Scholar
  24. 24.
    M. Lecar, F. Franklin and M. Murison, On predicting long-term orbital instability—A relation between the Lyapunov time and sudden orbital transitions, Astron. J., 104 (1992), 1230–1236.CrossRefGoogle Scholar
  25. 25.
    D. Lynden-Bell and P.P. Eggleton, On the consequences of the gravothermal catastrophe, Mon. Not. R. Astron. Soc., 191 (1980), 483–498.MathSciNetGoogle Scholar
  26. 26.
    D. Lynden-Bell and R.Wood, The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems, Mon. Not. R. Astron. Soc., 138 (1968), 495–525.Google Scholar
  27. 27.
    J. Makino, Vectorization of a treecode, J. Comput. Phys., 87 (1990), 148–160.MATHCrossRefGoogle Scholar
  28. 28.
    J. Makino, Yet another fast multipole method without multipoles—pseudo-particle multipole method, J. Comput. Phys., 151 (1999), 910–920.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J. Makino and S.J. Aarseth, On a hermite integrator with ahmad-cohen scheme for gravitational many-body problems, Publ. Astron. Soc. Japan, 44 (1992), 141–151.Google Scholar
  30. 30.
    J. Makino and P.Hut, Performance analysis of direct N-body calculations, Astrophys. J. Suppl. Ser., 68 (1988), 833–856.CrossRefGoogle Scholar
  31. 31.
    J. Makino, P. Hut, M. Kaplan and H. Saygın, A time-symmetric block time-step algorithm for N-body simulations, New Astronomy, 12 (2006), 124–133.CrossRefGoogle Scholar
  32. 32.
    J. Makino and M. Taiji, Scientific Simulations with Special-Purpose Computers—The GRAPE Systems, John Wiley & Sons, Chichester, 1998.MATHGoogle Scholar
  33. 33.
    J. Makino, M. Taiji, T. Ebisuzaki and D. Sugimoto, GRAPE-4: A massively parallel special-purpose computer for collisional N-body simulations, Astrophys. J., 480 (1997), 432–446.CrossRefGoogle Scholar
  34. 34.
    M. Mayor and D. Queloz, A Jupitor-mass companion to al solar-type star, Nature, 378 (1995), 355–357.CrossRefGoogle Scholar
  35. 35.
    K. Nitadori, J. Makino and P. Hut, Performance tuning of N-body codes on modern microprocessors: I. Direct integration with a hermite scheme on x86_64 architecture, New Astronomy, 12 (2006), 169–181.CrossRefGoogle Scholar
  36. 36.
    S. Pfalzner and P. Gibbon, Many-Body Tree Methods in Physics, Cambridge Univ. Press, Cambridge, 1996.Google Scholar
  37. 37.
    J.K. Salmon and M.S. Warren, Skeletons from the treecode closet, J. Comput. Phys., 111 (1994), 136–155.MATHCrossRefGoogle Scholar
  38. 38.
    J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.MATHGoogle Scholar
  39. 39.
    R.D. Skeel and C.W. Gear, Does variable step size ruin a symplectic integrator?, Physica D, 60 (1992), 311–313.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    T. Sterling, D.J. Becker, D. Savarese, J.E. Dorband, U.A. Ranawake and C.V. Packer, Beowulf: A parallel workstation for scientific computation, In: Proceedings of the 1995 International Conference on Parallel Processing, IEEE Comp. Soc., Los Alamitos, 1995, pp. 11–14.Google Scholar
  41. 41.
    T.L. Sterling, J. Salmon, D.J. Becker and D.F. Savarese, How to Build a Beowulf: A Guide to Implementation and Application of PC Clusters, MIT Press, Cambridge, MA, 1999.Google Scholar
  42. 42.
    G.J. Sussman and J. Wisdom, Numerical evidence that the motion of pluto is chaotic, Science, 241 (1988), 433–437.CrossRefGoogle Scholar
  43. 43.
    K. Yoshikawa and T. Fukushige, PPPM and TreePM methods on GRAPE systems for cosmological N-body simulations, Publ. Astron. Soc. Japan, 57 (2005), 849–860.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2008

Authors and Affiliations

  1. 1.Center for Computational AstrophysicsNational Astronomical Observatory of JapanTokyoJapan

Personalised recommendations