Aspects of free analysis



We survey the analysis around the free difference quotient derivation, which is the natural derivation for variables with the highest degree of noncommutativity. The analogue of the Fourier transform is then bialgebra duality for the bialgebra with derivation-comultiplication to which the free difference quotient gives rise and which involves fully matricial analytic functions. Some of the motivation from free probability, especially free entropy and random matrices are also discussed.

Keywords and phrases:

free difference quotient generalized resolvents infinitesimal bialgebras free entropy 

Mathematics Subject Classification(2000):

16W30 46L54 (primary) 47A56 15A52 (secondary) 


  1. 1.
    M. Aguiar, Infinitesimal Hopf algebras, In: New Trends in Hopf Algebra Theory, La Falda, 1999, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, pp. 1–29.Google Scholar
  2. 2.
    P. Biane, Processes with free increments, Math. Z., 227 (1998) 143–174CrossRefMathSciNetGoogle Scholar
  3. 3.
    U. Haagerup and S. Thorbjørnsen, A new application of random matrices: Ext(C r*(F 2)) is not a group, Ann. of Math. (2), 162 (2005), 711–775MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.W. Helton, J.A. Ball, C.R. Johnson and J.N. Palmer, Operator Theory, Analytic Functions, Matrices, and Electrical Engineering, CBMS Regional Conf. Ser. in Math., 68, Amer. Math. Soc., Providence, RI, 1987.Google Scholar
  5. 5.
    F. Hiai and D. Petz, The semicircle law, free random variables and entropy, Math. Surveys Monogr., 77, Amer. Math. Soc., Providence, RI, 2000.Google Scholar
  6. 6.
    S.A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61 (1979), 93–139MathSciNetGoogle Scholar
  7. 7.
    A. Nica and R. Speicher, Lectures on the combinatorics of free probability, London Math. Soc. Lecture Notes Ser., 335, Cambridge Univ. Press, Cambridge, 2006Google Scholar
  8. 8.
    D. Shlyakhtenko, Random Gaussian band matrices and freeness with amalgamation, Internat. Math. Res. Notices, 1996(1996), 1013–1025.CrossRefGoogle Scholar
  9. 9.
    J.L. Taylor, Functions of several noncommuting variables, Bull. Amer. Math. Soc., 79 (1973), 1–34CrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. I, Comm. Math. Phys., 155 (1993), 71–92CrossRefGoogle Scholar
  11. 11.
    D. Voiculescu, Operations on certain non-commutative operator-valued random variables, Astérisque, 232(1995), 243–275Google Scholar
  12. 12.
    D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. V. Noncommutative Hilbert transforms, Invent. Math., 132 (1998), 189–227CrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Voiculescu, Lectures on free probability theory, In: Ecole d’Été de Probabilites de Saint-Flour XXVIII–1998, Lecture Notes in Math., 1738, Springer-Verlag, 1998, pp. 279–349.Google Scholar
  14. 14.
    D. Voiculescu, The coalgebra of the free difference quotient and free probability, Internat. Math. Res. Notices, 2000 (2000), 79–106CrossRefGoogle Scholar
  15. 15.
    D. Voiculescu, Free entropy, Bull. London Math. Soc., 34 (2002), 257–278CrossRefGoogle Scholar
  16. 16.
    D. Voiculescu, Free analysis questions. I: Duality transform for the coalgebra of ∂X:B, Internat. Math. Res. Notices, 2004 (2004), 793–822CrossRefGoogle Scholar
  17. 17.
    D. Voiculescu, Free analysis questions. II: The Grassmannian completion and the series expansion at the origin, preprint, arXiv:0806.0361v1[math.OA].Google Scholar
  18. 18.
    D. Voiculescu, in preparation.Google Scholar
  19. 19.
    D.V. Voiculescu, K.J. Dykema and A. Nica, Free Random Variables, CRM Monogr. Ser., 1, Amer. Math. Soc., Providence, RI, 1992.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations