Japanese Journal of Mathematics

, Volume 3, Issue 1, pp 1–17

Invariant or quasi-invariant probability measures for infinite dimensional groups

Part I: Non-ergodicity of Euler hydrodynamic
Special Feature: The 3rd Takagi Lectures


Deterministic Euler flow on a torus cannot leave invariant any probability measure.

To the Japanese Mathematical Community, with my admiration and my warmest friendship.

Keywords and phrases

group of diffeomorphisms Malliavin calculus random unitary operator existence of Euler flow 

Mathematics subject classification (2000)

37K65 60H07 60H25 76B03 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A-M.
    H. Airault and P. Malliavin, Quasi-invariance of Brownian measures on the group of circle homeomorphisms and infinite-dimensional Riemannian geometry, J. Funct. Anal., 241 (2006), 99–142.MATHCrossRefMathSciNetGoogle Scholar
  2. A-C.
    S. Albeverio and A.B. Cruzeiro, Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two-dimensional fluids, Comm. Mathem. Phys., 129 (1990), 431–444.MATHCrossRefMathSciNetGoogle Scholar
  3. A.
    V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361.Google Scholar
  4. A-K.
    V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sc., 125, Springer-Verlag, 1998.Google Scholar
  5. C-F-M.
    A.B. Cruzeiro, F. Flandoli and P. Malliavin, Brownian motion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation, J. Funct. Anal., 242 (2007), 304–326.MATHCrossRefMathSciNetGoogle Scholar
  6. C-M08.
    A.B. Cruzeiro and P. Malliavin, Nonergodicity of Euler fluid dynamics on tori versus positivity of the Arnold–Ricci tensor, J. Funct. Anal., 254, 1903–1925.CrossRefGoogle Scholar
  7. C-M08’.
    A.B. Cruzeiro and P. Malliavin, Non-existence of infinitesimally invariant measures on loop groups, J. Funct. Anal., 254 (2008), 1974–1987.CrossRefGoogle Scholar
  8. Fu.
    M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, 1980.Google Scholar
  9. Ku.
    H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, 1990.Google Scholar
  10. M-R.
    P. Malliavin and R. Ren, Transfert of stochastic energy towards high modes and its application to diffeomorphism flow on tori, J. Funct. Anal., 2008.Google Scholar
  11. Y.
    K. Yosida, Functional Analysis, Grundlehren Math. Wiss., 123, Springer-Verlag.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer Japan 2008

Authors and Affiliations

  1. 1.ParisFrance

Personalised recommendations