Japanese Journal of Mathematics

, Volume 2, Issue 2, pp 297–302

On some number-theoretic conjectures of V. Arnold

Original Article

Abstract.

In [1], V.I. Arnold conjectured “the matrix Euler congruence” \({\rm tr} A^{p^n}\equiv {\rm tr} A^{p^{n-1}}\,(\text{mod}\,{p^{n}})\) for any integer matrix A, prime p, and natural number n. He proved it for p ≤ 5, n ≤ 4. In fact the conjecture immediately follows from a result of C.J. Smyth [5]. We give a simple proof of this result and discuss a related conjecture of Arnold concerning some congruences for multinomial coefficients.

Keywords and phrases:

Euler congruences algebraic integers multiinomial coefficients 

Mathematics Subject Classification (2000):

05A10 11A07 11C20 11R04 11S15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© The Mathematical Society of Japan and Springer 2007

Authors and Affiliations

  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations