Japanese Journal of Mathematics

, Volume 2, Issue 1, pp 83–96 | Cite as

Itô’s excursion theory and its applications

Special Feature: Award of the 1st Gauss Prize to K. Ito


A presentation of Itô’s excursion theory for general Markov processes is given, with several applications to Brownian motion and related processes.

Keywords and phrases:

excursion theory Poisson point process Lévy processes 

Mathematics Subject Classification (2000):

60J65 60J60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Azéma and M. Yor, Une solution simple au problème de Skorokhod, In: Séminaire de Probabilités, XIII, Univ. Strasbourg, Strasbourg, 1977/78, Lecture Notes in Math., 721, Springer, Berlin, 1979, pp. 90–115.Google Scholar
  2. 2.
    J. Bertoin, Lévy processes, Cambridge Tracts in Math., 121, Cambridge Univ. Press, Cambridge, 1996.MATHGoogle Scholar
  3. 3.
    Ph. Biane and M. Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math. (2), 111 (1987), 23–101.MATHMathSciNetGoogle Scholar
  4. 4.
    J.-M. Bismut, Last exit decompositions and regularity at the boundary of transition probabilities, Z. Wahrsch. Verw. Gebiete, 69 (1985), 65–98.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. M. Blumenthal, On construction of Markov processes, Z. Wahrsch. Verw. Gebiete, 63 (1983), 433–444.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. M. Blumenthal, Excursions of Markov processes, Probability and its Applications, Birkhäuser Boston Inc., Boston, MA, 1992.Google Scholar
  7. 7.
    K. Burdzy, Multidimensional Brownian excursions and potential theory, Pitman Res. Notes Math. Ser., 164, Longman Scientific & Technical, Harlow, 1987.Google Scholar
  8. 8.
    A. S. Cherny, Principal values of the integral functionals of Brownian motion: existence, continuity and an extension of Itô’s formula, In: Séminaire de Probabilités, XXXV, Lecture Notes in Math., 1755, Springer, Berlin, 2001, pp. 348–370.Google Scholar
  9. 9.
    D. Freedman, Markov chains, Holden-Day, San Francisco, Calif., 1971.MATHGoogle Scholar
  10. 10.
    B. Fristedt and S. J. Taylor, Constructions of local time for a Markov process, Z. Wahrsch. Verw. Gebiete, 62 (1983), 73–112.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. K. Getoor and M. J. Sharpe, Last exit decompositions and distributions, Indiana Univ. Math. J., 23 (1973/74), 377–404.CrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Greenwood and J. Pitman, Construction of local time and Poisson point processes from nested arrays, J. London Math. Soc. (2), 22 (1980), 182–192.CrossRefMathSciNetGoogle Scholar
  13. 13.
    P. Greenwood and J. Pitman, Fluctuation identities for Lévy processes and splitting at the maximum, Adv. in Appl. Probab., 12 (1980), 893–902.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Hoffmann-Jørgensen, Markov sets, Math. Scand., 24 (1970), 145–166.Google Scholar
  15. 15.
    K. Itô, Poisson point processes attached to Markov processes, In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California, Berkeley, Calif., 1970/1971, Vol. III: Probability theory, Berkeley, Calif., 1972, Univ. California Press, pp. 225–239.Google Scholar
  16. 16.
    K. Itô, Selected papers, edited and with an introduction by S. R. S. Varadhan and Daniel W. Stroock, Springer-Verlag, New York, 1987.Google Scholar
  17. 17.
    K. Itô and H. P. McKean, Jr., Diffusion processes and their sample paths, Die Grundlehren der Mathematischen Wissenschaften, 125, Springer-Verlag, Berlin, New York, 1965.Google Scholar
  18. 18.
    M. Kac, On some connections between probability theory and differential and integral equations, In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, Berkeley and Los Angeles, 1951, Univ. of California Press, pp. 189–215.Google Scholar
  19. 19.
    Y. Kasahara and S. Watanabe, Brownian representation of a class of Lévy processes and its application to occupation times of diffusion processes, Illinois J. Math., 50 (2006), 515–539 (electronic).MATHMathSciNetGoogle Scholar
  20. 20.
    P. Lévy, Sur certains processus stochastiques homogènes, Compositio Math., 7 (1939), 283–339.MATHMathSciNetGoogle Scholar
  21. 21.
    P. Lévy, Processus stochastiques et mouvement brownien, Suivi d’une note de M. Loève. Deuxième édition revue et augmentée, Gauthier-Villars & Cie, Paris, 1965.Google Scholar
  22. 22.
    B. Maisonneuve, Exit systems, Ann. Probability, 3 (1975), 399–411.MATHMathSciNetGoogle Scholar
  23. 23.
    J. Obłój, The Skorokhod embedding problem and its offspring, Probab. Surv., 1 (2004), 321–390 (electronic).CrossRefMathSciNetGoogle Scholar
  24. 24.
    J. Pitman, Lévy systems and path decompositions, In: Seminar on Stochastic Processes, 1981, Evanston, Ill., 1981, Progr. Prob. Statist.,1, Birkhäuser, Boston, Mass., 1981, pp. 79–110.Google Scholar
  25. 25.
    J. Pitman, Stationary excursions, In: Séminaire de Probabilités, XXI, Lecture Notes in Math., 1247, Springer, Berlin, 1987, pp. 289–302.Google Scholar
  26. 26.
    J. Pitman, Cyclically stationary Brownian local time processes, Probab. Theory Related Fields, 106 (1996), 299–329.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    J. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete, 59 (1982), 425–457.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    J. Pitman and M. Yor, Asymptotic laws of planar Brownian motion, Ann. Probab., 14 (1986), 733–779.MATHMathSciNetGoogle Scholar
  29. 29.
    J. Pitman and M. Yor, Arcsine laws and interval partitions derived from a stable subordinator, Proc. London Math. Soc. (3), 65 (1992), 326–356.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    L. C. G. Rogers, Williams’ characterisation of the Brownian excursion law: proof and applications, In: Seminar on Probability, XV, Univ. Strasbourg, Strasbourg, 1979/1980, (French), Lecture Notes in Math., 850, Springer, Berlin, 1981, pp. 227–250.Google Scholar
  31. 31.
    T. S. Salisbury, Construction of right processes from excursions, Probab. Theory Related Fields, 73 (1986), 351–367.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    T. S. Salisbury, On the Itô excursion process, Probab. Theory Related Fields, 73 (1986), 319–350.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    T. Shiga and S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27 (1973), 37–46.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    F. Spitzer, Some theorems concerning 2-dimensional Brownian motion, Trans. Amer. Math. Soc., 87 (1958), 187–197.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    J. Walsh, Downcrossings and the Markov property of local time, In: Temps locaux, Astérisque, 52-53, Soc. Math. France, Paris, 1978, pp. 189–116.Google Scholar
  36. 36.
    J. Walsh, Excursions and local time, In: Temps locaux, Astérisque, 52-53, Soc. Math. France, Paris, 1978, pp. 159–192.Google Scholar
  37. 37.
    D. Williams, Diffusions, Markov processes, and martingales. Vol. 1, Foundations, John Wiley & Sons Ltd., Chichester, 1979.Google Scholar
  38. 38.
    T. Yamada, Principal values of Brownian local times and their related topics, In: Itô’s stochastic calculus and probability theory, Springer, Tokyo, 1996, pp. 413–422.Google Scholar
  39. 39.
    T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11 (1971), 155–167.MATHMathSciNetGoogle Scholar
  40. 40.
    M. Yor, Sur la transformée de Hilbert des temps locaux browniens, et une extension de la formule d’Itô, In: Seminar on Probability, XVI, Lecture Notes in Math., 920, Springer, Berlin, 1982, pp. 238–247.Google Scholar
  41. 41.
    M. Yor, Some aspects of Brownian motion. Part I, some special functionals, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 1992.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer 2007

Authors and Affiliations

  1. 1.Statistics Department, 367 Evans Hall #3860University of CaliforniaBerkeleyUSA
  2. 2.Laboratoire de Probabilités et Modèles AléatoiresUniversité Paris VIParisFrance
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations