Japanese Journal of Mathematics

, Volume 2, Issue 1, pp 165–196 | Cite as

Motives associated to graphs

Special Feature: The 1st Takagi Lecture


A report on recent results and outstanding problems concerning motives associated to graphs.

Keywords and phrases:

Feynman diagram graph Schwinger integral period graph polynomial motive renormalization Hopf algebra 

Mathematics Subject Classification (2000):

11G55 11M06 14G99 81T15 81T18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Belkale and P. Brosnan, Matroids, motives, and a conjecture of Kontsevich, Duke Math. J., 116 (2003), 147–188.MATHCrossRefMathSciNetGoogle Scholar
  2. S. Bloch, H. Esnault and D. Kreimer, Motives associated to graph polynomials, to appear in Comm. Math. Phys.Google Scholar
  3. D. Broadhurst and D. Kreimer, Knots and numbers in Φ4 theory to 7 loops and beyond, Internat. J. Modern Phys. C, 6 (1995), 519–524.MATHCrossRefMathSciNetGoogle Scholar
  4. D. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams upto 9 loops, Phys. Lett. B, 393 (1997), 403–412.MATHCrossRefMathSciNetGoogle Scholar
  5. F. Brown, Multiple zeta values and periods of moduli spaces \({\overline{M}_{0,n} (\mathbb R)}\) , thèse, to appear.Google Scholar
  6. J. Conant and K. Vogtmann, On a Theorem of Kontsevich, Algebr. Geom. Topol., 3 (2003), 1167–1224.MATHCrossRefMathSciNetGoogle Scholar
  7. A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I., The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210 (2000), 249–273.MATHCrossRefMathSciNetGoogle Scholar
  8. A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. II., The β function, diffeomorphisms and the renormalization group, Comm. Math. Phys., 216 (2001), 215–241.MATHCrossRefMathSciNetGoogle Scholar
  9. A. Connes and M. Marcolli, Quantum fields and motives, J. Geom. Phys., 56 (2006), 55–85.MATHCrossRefMathSciNetGoogle Scholar
  10. P. Deligne, Local behavior of Hodge structures at infinity, preprint.Google Scholar
  11. H. Esnault, V. Schechtman and E. Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math., 109 (1992), 557–561; Erratum: Invent. Math., 112 (1993), p. 447.Google Scholar
  12. A. Goncharov and Y. Manin, Multiple zeta motives and moduli spaces \({\overline{M}_{0,n}}\), Compos. Math., 140 (2004), 1–14.MATHCrossRefMathSciNetGoogle Scholar
  13. L. Illusie, Autour du théorème de monodromie locale, Astérisque, 223 (1994).Google Scholar
  14. C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980.Google Scholar
  15. M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II, Paris, 1992, 97–121; Progr. Math., 120, Birkhäuser, Basel, 1994.Google Scholar
  16. M. Kontsevich, Formal (non)commutative symplectic geometry, In: The Gelfand Mathematical Seminars, 1990-1992, Birkhäuser, Boston, 1993, pp. 173–187.Google Scholar
  17. D. Kreimer, Lecture at IHES, 2005.Google Scholar
  18. P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren Math. Wiss., 300, Springer-Verlag, 1992.Google Scholar
  19. M. Polyak, Feynman diagrams for pedestrians and mathematicians, math.GT/0406251.Google Scholar
  20. M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., 24 (1989), 849–995.Google Scholar
  21. M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci., 26 (1990), 221–333.MATHMathSciNetGoogle Scholar
  22. J. Steenbrink, Limits of Hodge structures, Invent. Math., 31 (1976), 229–257.MATHCrossRefMathSciNetGoogle Scholar
  23. J, Steenbrink and S. Zucker, Variation of mixed Hodge structure. I., Invent. Math., 80 (1985), 489–542.MATHCrossRefMathSciNetGoogle Scholar
  24. J. Stembridge, Counting points on varieties over finite fields related to a conjecture of Kontsevich, Ann. Comb., 2 (1998), 365–385.CrossRefMathSciNetGoogle Scholar
  25. C. Soulé, Régulateurs, Seminar Bourbaki, 1984-85; Astérisque, 133-134 (1986), 237–253.Google Scholar

Copyright information

© The Mathematical Society of Japan and Springer 2007

Authors and Affiliations

  1. 1.Dept. of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations