Japanese Journal of Mathematics

, Volume 1, Issue 1, pp 137–261 | Cite as

Finite vs affine W-algebras



In Section 1 we review various equivalent definitions of a vertex algebra V. The main novelty here is the definition in terms of an indefinite integral of the λ-bracket. In Section 2 we construct, in the most general framework, the Zhu algebra ZhuΓV, an associative algebra which “controls” Γ-twisted representations of the vertex algebra V with a given Hamiltonian operator H. An important special case of this construction is the H-twisted Zhu algebra Zhu H V. In Section 3 we review the theory of non-linear Lie conformal algebras (respectively non-linear Lie algebras). Their universal enveloping vertex algebras (resp. universal enveloping algebras) form an important class of freely generated vertex algebras (resp. PBW generated associative algebras). We also introduce the H-twisted Zhu non-linear Lie algebra Zhu H R of a non-linear Lie conformal algebra R and we show that its universal enveloping algebra is isomorphic to the H-twisted Zhu algebra of the universal enveloping vertex algebra of R. After a discussion of the necessary cohomological material in Section 4, we review in Section 5 the construction and basic properties of affine and finite W-algebras, obtained by the method of quantum Hamiltonian reduction. Those are some of the most intensively studied examples of freely generated vertex algebras and PBW generated associative algebras. Applying the machinery developed in Sections 3 and 4, we then show that the H-twisted Zhu algebra of an affine W-algebra is isomorphic to the finite W-algebra, attached to the same data. In Section 6 we define the Zhu algebra of a Poisson vertex algebra, and we discuss quasiclassical limits. In the Appendix, the equivalence of three definitions of a finite W-algebra is established.

Keywords and phrases.

vertex algebra (non-linear) Lie conformal algebra deformed vertex operators twisted module over a vertex algebra Zhu algebra finite and affine W-algebras quasi-classical limit 

Mathematics Subject Classification (2000).



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AM.
    A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math., 139 (2000), 135–172.MathSciNetGoogle Scholar
  2. A1.
    T. Arakawa, Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture, math-ph/0405015.Google Scholar
  3. A2.
    T. Arakawa, Representation theory of W-algebras, math.QA/0506056.Google Scholar
  4. BK.
    B. Bakalov and V.G. Kac, Field algebras, Int. Math. Res. Not., 3 (2003), 123–159.MathSciNetGoogle Scholar
  5. B.
    R. Borcherds, Vertex algebras, Kac–Moody algebras and the Monster, Proc. Natl. Acad. Sci. USA, 83 (1986), 3068–3071.MathSciNetGoogle Scholar
  6. BS.
    P. Bouwknegt and K. Schoutens, W-symmetry, Advanced Ser. Math. Phys., 22 (1995).Google Scholar
  7. BT1.
    J. de Boer and T. Tjin, Quantization and representation theory of finite W-algebras, Comm. Math. Phys., 158 (1993), 485–516.CrossRefMathSciNetGoogle Scholar
  8. BT.
    J. de Boer and T. Tjin, The relation between quantum W-algebras and Lie algebras, Comm. Math. Phys., 160 (1994), 317–332.CrossRefMathSciNetGoogle Scholar
  9. BrG.
    J. Brundan and S.M. Goodwin, Good gradings polytopes, math.QA/0510205.Google Scholar
  10. BrK.
    J. Brundan and A. Kleshchev, Shifted Yangians and finite W-algebras, Adv. Math., to appear.Google Scholar
  11. D’K.
    A. D’Andrea and V.G. Kac, Structure theory of finite conformal algebras, Selecta Math., 4 (1998), 377–418.MathSciNetGoogle Scholar
  12. DK.
    A. De Sole and V.G. Kac, Freely generated vertex algebras and non-linear Lie conformal algebras, Comm. Math. Phys., 254 (2005), 659–694.CrossRefMathSciNetGoogle Scholar
  13. DV.
    K. de Vos and P. van Drel, The Kazhdan–Lusztig conjecture for finite W-algebras, Lett. Math. Phys., 35 (1995), 333–344.CrossRefMathSciNetGoogle Scholar
  14. DLM.
    C. Dong, H. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Ann., 310 (1998), 571–600.CrossRefMathSciNetGoogle Scholar
  15. DS.
    V.G. Drinfeld and V.V. Sokolov, Lie algebra and the KdV type equations, Soviet J. Math., 30 (1985), 1975–2036.Google Scholar
  16. EK.
    A.G. Elashvili and V.G. Kac, Classification of good gradings of simple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 213 (2005), 85–104, math-ph/031203.Google Scholar
  17. FB.
    E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Amer. Math. Soc. Monogr., 88 (2001), Second edition (2004).Google Scholar
  18. FF1.
    B.L. Feigin and E. Frenkel, Quantization of Drinfeld–Sokolov reduction, Phys. Lett. B, 246 (1990), 75–81.MathSciNetGoogle Scholar
  19. FF2.
    B.L. Feigin and E. Frenkel, Affine Kac-Moody algebras, bosonization and resolutions, Lett. Math. Phys., 19 (1990), 307–317.CrossRefMathSciNetGoogle Scholar
  20. FF3.
    B.L. Feigin and E. Frenkel, Integrals of motions and quantum groups, Lecture Notes in Math., 1620 (1995), 349–418.MathSciNetGoogle Scholar
  21. FHL.
    I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approach to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104 (1993)Google Scholar
  22. FKW.
    E. Frenkel, V.G. Kac and M. Wakimoto, Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction, Comm. Math. Phys., 147 (1992), 295–328.CrossRefMathSciNetGoogle Scholar
  23. GG.
    W.L. Gan and V. Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not., 5 (2002), 243–255.MathSciNetGoogle Scholar
  24. GMS.
    V. Gorbunov, F. Malikov, and V. Schechtman, Gerbes of chiral differential operators II, Invent. Math., 155 (2004), 605–680.MathSciNetGoogle Scholar
  25. J.
    N. Jacobson, Lie algebras, Interscience, New York, 1962.Google Scholar
  26. K.
    V.G. Kac, Vertex algebras for beginners, Univ. Lecture Ser. vol 10, Amer. Math. Soc., Providence, RI (1996). Second edition (1998).Google Scholar
  27. KT.
    V.G. Kac and I. Todorov, Superconformal current algebras and their unitary representations, Comm. Math. Phys., 102 (1985), 337–347.CrossRefMathSciNetGoogle Scholar
  28. KRW.
    V.G. Kac, S.-S. Roan and M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys., 241 (2003), 307–342.MathSciNetGoogle Scholar
  29. KW1.
    V.G. Kac and M.Wakimoto, Quantum reduction and representation theory of superconformal algebras, Adv. Math., 185 (2004), 400–458, Corrigendum, Adv. Math., 193 (2005), 453–455.Google Scholar
  30. KW2.
    V.G. Kac and M.Wakimoto, Quantum reduction in the twisted case, Progr. Math., 237 (2005), 85–126.MathSciNetGoogle Scholar
  31. KWa.
    V.G. Kac and W. Wang, Vertex operator superalgebras and their representations, Contemp. Math., 175 (1994), 161–191.MathSciNetGoogle Scholar
  32. Ko.
    B. Kostant, On Whittaker vectors and representation theory, Invent. Math., 48 (1978), 101–184.CrossRefMATHMathSciNetGoogle Scholar
  33. Ko1.
    B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations of equal rank subgroups, Duke Math. J., 100 (1999), 447–501.CrossRefMATHMathSciNetGoogle Scholar
  34. KS.
    B. Kostant and S. Sternberg, Symplectic reduction, BRS cohomology and infinite-dimensional Clifford algebras, Ann. Phys., 176 (1987), 49–113.MathSciNetGoogle Scholar
  35. M.
    H. Matumoto, Whittaker modules associated with highest weight modules, Duke Math. J., 60 (1990), 59–113.CrossRefMATHMathSciNetGoogle Scholar
  36. P1.
    A. Premet, Special transverse slices and their enveloping algebras, Adv. Math., 170 (2002), 1–55.CrossRefMATHMathSciNetGoogle Scholar
  37. P2.
    A. Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, preprint, 2005.Google Scholar
  38. RS.
    E. Ragoucy and P. Sorba, Yangian realizations from finite W-algebras, Comm. Math. Phys., 203 (1999), 551–576.CrossRefMathSciNetGoogle Scholar
  39. ST.
    A. Severin and W. Troost, Extensions of Virasoro algebra and gauged WZW models, Phys. Lett. B, 315 (1993), 304–310.MathSciNetGoogle Scholar
  40. Za.
    A. Zamolodchikov, Infinite extra symmetries in two-dimensional conformal quantum field theory, Teoret. Mat. Fiz., 65 (1985), 347–359.MathSciNetGoogle Scholar
  41. Z.
    Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 9 (1996), 237–302.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Mathematical Society of Japan and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Istituto Nazionale di Alta MatematicaCittá UniversitariaRomaItaly
  3. 3.Department of MathematicsMITCambridgeUSA

Personalised recommendations