# Stock mechanics: Predicting recession in S&P500, DJIA and NASDAQ

Article

Received:

Accepted:

- 60 Downloads
- 2 Citations

## Abstract

Proposed in this paper is an original method assuming potential and kinetic energies for prices and for the conservation of their sum that has been developed for forecasting exchanges. Connections with a power law are shown. Semiempirical applications on the S&P500, DJIA, and NASDAQ predict a forthcoming recession in them. An emerging market, the Istanbul Stock Exchange index ISE-100 is found harboring a potential to continue to rise.

## Keywords

Potential and kinetic energy equations of motion power law oscillations crashes portfolio growths## PACS (2006)

89.65.Gh## Preview

Unable to display preview. Download preview PDF.

## References

- [1]P. Gopikrishnan, V. Plerou, X. Gabaix and H.E. Stanley: “Statistical properties of share volume traded in financial markets”,
*Phys. Rev. E*, Vol. 62, (2000), pp. 4493–4496.CrossRefADSGoogle Scholar - [2]J-P. Bouchaud and R. Cont: “A Langevin approach to stock market fluctuations and crashes”,
*Preprint*: arXiv:cond-mat/9801279;*Eur. Phys. J. B*, Vol. 6, (1998), pp. 543–550.CrossRefADSGoogle Scholar - [3]P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer and H.E. Stanley: “Scaling of the Distribution of Fluctuations of Financial Market Indices”,
*Phys. Rev. E*, Vol. 60, (1999), pp. 5305–5316.CrossRefADSGoogle Scholar - [4]R. Cont and J.-P. Bouchaud: “Herd behavior and aggregate fluctuations in financial markets”,
*Macroeconomic Dynamics*, Vol. 4, (2000), pp. 170–196.CrossRefGoogle Scholar - [5]Ç. Tuncay: “Stock mechanics: a classical approach”,
*Preprint*: arXiv:physics/0503163.Google Scholar - [6]K. Ide and D. Sornette: “Oscillatory Finite-Time Singularities in Finance, Population and Rupture”,
*Phys. A*, Vol. 307, (2002), pp. 63–106;*Preprint*: arXiv:cond-mat/0106047.CrossRefMathSciNetGoogle Scholar - [7]D. Sornette and K. Ide: “Theory of self-similar oscillatory finite-time singularities in Finance, Population and Rupture”,
*Int. J. Mod. Phys. C*, Vol. 14(3), (2002), pp. 267–275;*Preprint*: arXiv:cond-mat/0106054.ADSGoogle Scholar - [8]V. Pareto:
*Cours d”economie politique reprinted as a volume of Oeuvres Compl‘etes*, Droz, Geneva, 1965.Google Scholar - [9]G. Zipf:
*Human Behavior and the Principle of Last Effort*, Addison-Wesley, Cambridge, MA, 1949.Google Scholar - [10]H. Saleur, C.G. Sammis and D. Sornette: “Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity”,
*J. Geophys. Res.*, Vol. 101, (1996), pp. 17661–17677.CrossRefADSGoogle Scholar - [11]W.I. Newman, D.L. Turcotte and A.M. Gabrielov: “Log-periodic behavior of a hierarchical failure model with applications to precursory seismic activation”,
*Phys. Rev. E*, Vol. 52(5), (1995), pp. 4827–4835.CrossRefADSMathSciNetGoogle Scholar - [12]J.A. Feigenbaum and P.G.O. Freund: “Discrete Scaling in Stock Markets Before Crashes”,
*Int. J. Mod. Phys. C*, Vol. 10, (1996), pp. 3737–3745;*Preprint*: arXiv:cond-mat/9509033.CrossRefADSGoogle Scholar - [13]D. Sornette, A. Johansen and J-P Bouchaud: “Stock market crashes, Precursors and Replicas”,
*J. Phys. I*, Vol. 6, (1996), pp. 167–175;*Preprint*: arXiv:cond-mat/9510036.CrossRefGoogle Scholar - [14]D. Sornette: “Discrete scale invariance and complex dimensions”,
*Phys. Rep.*, Vol. 297, (1998), pp. 239–270;*Preprint*: arXiv:cond-mat/cond-mat/9707012.CrossRefMathSciNetGoogle Scholar - [15]J.-P. Bouchaud: “Power laws in economics and finance: some ideas from physics”,
*Quant. Fin.*, Vol. 1, (2001), pp. 105–112.CrossRefGoogle Scholar - [16]X. Gabaix, P. Gopikrishnan, V. Plerou and H.E. Stanley: “A theory of power-law distributions in financial market fluctuations”,
*Nature*, Vol. 423, (2003), pp. 267–270.CrossRefADSGoogle Scholar - [17]X. Gabaix: “Zipf's Law for Cities”,
*Quart. J. Econom.*, Vol. 114(3), (1999), pp. 739–767.CrossRefMATHGoogle Scholar - [18]Y. Huang, H. Saleour, C.G. Sammis and D. Sornette: “Precursors, aftershocks, criticality and self-organized criticality”,
*Europhys. Lett.*, Vol. 41, (1998), pp. 43–48;*Preprint*: arXiv:cond-mat/9612065.CrossRefADSGoogle Scholar - [19]B.D. Malamud, G. Morein and D.L. Turcotte: “Forest fires: An example of self-organized critical behavior”,
*Science*, Vol. 281, (1998), pp. 1840–1842.CrossRefADSGoogle Scholar - [20]S. Drożdż, F. Ruf, J. Speth and M. Wójcík: “Imprints of log-periodic self-similarity in the stock market”,
*Eur. Phys. J. B*, Vol. 10, (1999), pp. 589–593.CrossRefADSGoogle Scholar - [21]S. Drożdż, F. Grümmer, F. Ruf and J. Speth: “Log-periodic self-similarity: an emerging financial law?”,
*Physica A*, Vol. 324, (2003), pp. 174–182.CrossRefADSGoogle Scholar - [22]J.-P. Bouchaud, M. M'ezard and M. Potters: “Statistical properties of stock order books: empirical results and models”,
*Quant. Fin.*, Vol. 2, (2002), pp. 251–256.CrossRefGoogle Scholar - [23]A. Johansen and D. Sornette: “Modeling the stock market prior to large crashes”,
*Eur. Phys. J. B*, Vol. 9, (1999), pp. 167–174.CrossRefADSGoogle Scholar - [24]D. Sornette and A. Johansen: “Large financial crashes”,
*Physica A*, Vol. 245, (1997), pp. 411–422l;*Preprint*: arXiv:cond-mat/9704127.CrossRefADSMathSciNetGoogle Scholar - [25]A. Johansen, O. Ledoit and D. Sornette: “Crashes as critical points”,
*Int. J. Theor. Appl. Finance*, Vol. 3, (2000), pp. 219–255.Google Scholar - [26]W-X. Zhou and D. Sornette: “Renormalization group analysis of the 2000-2002 anti-bubble in the US S&P 500 index: Explanation of the hierarchy of 5 crashes and prediction”,
*Physica A*, Vol. 330, (2003), pp. 584–604;*Preprint*arXiv:physics/0301023.CrossRefADSMathSciNetGoogle Scholar - [27]D. Sornette and W-X. Zhou: “The US 2000-2002 market descent: How much longer and deeper?”,
*Quant. Fin.*, Vol. 2, (2002), pp. 468–481.CrossRefGoogle Scholar - [28]A. Johansen, O. Ledoit and D. Sornette: “Crashes as critical points”,
*Int. J. The. Appl. Finance*, Vol. 3, (2000), pp. 219–255.Google Scholar - [29]W-X. Zhou and D. Sornette: “Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000”,
*Physica A*, Vol. 330, (2002), pp. 543–583;*Preprint*:arXiv:cond-mat/0212010.CrossRefADSMathSciNetGoogle Scholar - [30]J. Laherrèere and D. Sornette: “Stretched exponential distributions in nature and economy: ”fat tails” with characteristic scales”,
*Eur. Phys. J. B*, Vol. 2, (1998), pp. 525–539.CrossRefADSGoogle Scholar - [31]A. Johansen and D. Sornette: “Critical ruptures”,
*Eur. Phys. J. B*, Vol. 18, (2000), pp. 163–181;*Preprint*: arXiv:cond-mat/0003478.CrossRefADSGoogle Scholar - [32]For many other articles of D. Sornette see also several issues of the journal
*Eur. Phys. J. B*and search*Preprint*: http://xxx.lanl.gov/abs/cond-mat/. - [33]J-P. Bouchaud: “Power laws in economics and finance: some ideas from physics”,
*Quant. Fin.*, Vol. 1, (2001), pp. 105–112.CrossRefGoogle Scholar - [34]For detailed information about NYSE shares and indices, URL: http://biz.yahoo.com/i/.
- [35]For detailed information about ISE, URL: http://www.imkb.gov.tr/sirket/sirketler_y_2003.thm.

## Copyright information

© Central European Science Journals Warsaw and Springer-Verlag Berlin Heidelberg 2006