Central European Journal of Chemistry

, Volume 4, Issue 1, pp 194–206 | Cite as

AFM study of complement system assembly initiated by antigen-antibody complex

  • Almira Ramanaviciene
  • Valentinas Snitka
  • Rasa Mieliauskiene
  • Rolandas Kazlauskas
  • Arunas Ramanavicius


The shape and size of complement system C1 components assembled on a SiO2 surface after classical activation by antigen-antibody complex was determined by tapping mode atomic force microscopy (AFM). The SiO2 substrate was silanized and bovine leukemia virus proteins gp51 were covalently bound to the SiO2 substrate. Self-assembly of complement system proteins was investigated by AFM. Uniform coating of silanized surface by gp51 proteins was observed by AFM. After incubation of gp51 coated substrate in anti-gp51 antibody containing solution, Ag-Ab complexes were detected on the substrate surface by AFM. Then after treatment of Ag-Ab complex modified substrate by guinea-pig blood serum containing highly active complement system proteins for 3 minutes and 30 minutes features 2–3 times and 5–8 times higher in diameter and in height if compared with those observed after formation of Ag-Ab complex, were observed respectively on the surface of SiO2. This study revealed that AFM might be applied for the imaging of complement system assembly and provides valuable information that can be used to complement other well-established techniques.


Bionanotechnology antigen-antibody docking complement system bovine leukemia virus AFM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel and D.J. Müller: “Imaging and manipulation of biological structures with the AFM”, Micron, Vol. 33, (2002), pp. 385–397.CrossRefGoogle Scholar
  2. [2]
    S. Scheuring, F. Reiss-Husson, A. Engel, J.L. Rigaud and J.L. Ranck: “Highresolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2”, Embo J., Vol. 20, (2001), pp. 3029–3035.CrossRefGoogle Scholar
  3. [3]
    H.J. Müller-Eberhard and P.A. Miescher (Eds.): Complement, Verlag, Berlin, 1985.Google Scholar
  4. [4]
    B. Walivaara, A. Askendal, I. Lundstrom and P. Tengvall: “Imaging of the early events of classical complement activation using antibodies and atomic force microscopy”, J. Coll. Interface. Sci., Vol. 187, (1997), pp. 121–127.CrossRefGoogle Scholar
  5. [5]
    L. Mark, W.H. Lee, O.B. Spiller, D. Proctor, D.J. Blackbourn, B.O. Villoutreix and A.M. Blom: “The Kaposi's sarcoma-associated herpesvirus complement control protein mimics human molecular mechanisms for inhibition of the complement system”, J. Biol. Chem., Vol. 279, (2004), pp. 45093–45101.CrossRefGoogle Scholar
  6. [6]
    K.B.M. Reid: “The complement system: A major effector mechanism in humoral immunity”, Immunologist, Vol. 3, (1995), pp. 206–211.Google Scholar
  7. [7]
    N.R. Cooper: “Activation of the complement system”, Contemp. Topics Mol. Immunol., Vol. 2, (1973), pp. 155–183.Google Scholar
  8. [8]
    J.S. Presanis, M. Kojima and R.B. Sim: “Biochemistry and genetics of mannanbinding lectin (MBL)”, Biochem. Soc. Trans., Vol. 31, (2003), pp. 748–752.CrossRefGoogle Scholar
  9. [9]
    J.W Goers, V.N. Schumaker, M.M. Glovsky, J. Rebek and H.J. Muller-Eberhard: “Complement activation by a univalent hapten-antibody complex”, J. Biol. Chem., Vol. 250, (1975), pp. 4918–4925.Google Scholar
  10. [10]
    J. Kuby: Immunology, W.H. Freeman and Company, New York, 1997.Google Scholar
  11. [11]
    H.J. Müller-Eberhard: “Molecular organization and function of the complement system”, Ann. Rev. Biochem., Vol. 57, (1988). pp. 321–347.CrossRefGoogle Scholar
  12. [12]
    A. Ramanaviciene, J. Acaite and A. Ramanavicius: “Circulating immune complexes as indicators of environmental contamination”, Envir. Toxicol., Vol. 19, (2004), pp. 505–509.CrossRefGoogle Scholar
  13. [13]
    G. Goldberger, M.L. Thomas, B.F. Tack, J. Williams, H.R. Colten and G.N. Abraham: “NH2-terminal structure and cleavage of guinea pig pro-cs, the precursor of the third complement componen”, J. Biol. Chem., Vol. 256, (1981), pp. 12617–12619.Google Scholar
  14. [14]
    J. Bramham, C.T. Thai, D.C. Soares, D. Uhrin, R.T. Ogata and P.N. Barlow: “Functional insights from the structure of the multifunctional C345C domain of C5 of complement”, J. Biol. Chem., Vol. 280, (2005), pp. 10636–10645.CrossRefGoogle Scholar
  15. [15]
    K.D. Caldwell, T. Sandberg, J. Hellstrom, P. Tengvall and J. Andersson: “Mucin adsorption to polymeric surfaces: kinetics, quantification and reduction of complement activation”, Abstracts of papers of the American chemical society, Vol. 225, (2003), pp. U712–U712.Google Scholar
  16. [16]
    J. Wettero, A. Askendal, T. Bengtsson and P. Tengvall: “On the binding of complement to solid artificial surfaces in vitro”, Biomaterials, Vol. 23, (2002), 981–991.CrossRefGoogle Scholar
  17. [17]
    M.J. Corey, R.J. Kinders, C.M. Poduje, C.L. Bruce, H. Rowley, L.G. Brown, G.M. Hass and R.L. Vessella: “Mechanistic studies of the effects of anti-factor H antibodies on complement-mediated lysis”, J. Biol. Chem., Vol. 275, (2000), pp. 12917–12925.CrossRefGoogle Scholar
  18. [18]
    D.V. Rozanov, A.Y. Savinov, V.S. Golubkov, T.I. Postnova, A. Remacle, S. Tomlinson and A.Y. Strongin: “Cellular membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves C3b, an essential component of the complement system”, J. Biol. Chem., Vol. 279, (2004), pp.46551–46557.CrossRefGoogle Scholar
  19. [19]
    D. Fotiadis, P. Qian, A. Philippsen, P.A. Bullough, A. Engel and C.N. Hunter: “Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy”, J. Biol. Chem., Vol. 279, (2004), pp. 2063–2068.CrossRefGoogle Scholar
  20. [20]
    N. Fang and V. Chan: “Chitosan-induced restructuration of a mica-supported phospholipids bilayer: An atomic force microscopy study”, Biomacromolecules, Vol. 4, (2003), pp.1596–1604.CrossRefGoogle Scholar
  21. [21]
    N. Bhasin, P. Carl, S. Harper, G. Feng, H. Lu, D.W. Speicher and D.E. Discher: “Chemistry on a single protein, vascular cell adhesion molecule-1, during forced unfolding”, J. Biol. Chem., Vol. 279, (2004), pp. 45865–45874.CrossRefGoogle Scholar
  22. [22]
    K. U. Streller, T. Pompe, N. Herold, M. Grimmer and C. Werner: “In vitro reconstitution of fibrillar collagen type I assemblies at reactive polymer surfaces”, Biomacromolecules, Vol. 5, (2004), pp. 1340–1350.CrossRefGoogle Scholar
  23. [23]
    A. Hirai, Y. Tsujii, M. Tsuji and F. Horii: “AFM observation of band-like cellulose assemblies produced by Acetobacter xylinum”, Biomacromolecules, Vol. 5, (2004), pp. 2079–2081.CrossRefGoogle Scholar
  24. [24]
    P. Vermette, H.J. Griesser, P. Kambouris and L. Meagher: “Characterization of surface-immobilized layers of intact liposomes”, Biomacromolecules, Vol. 5, (2004), pp. 1496–1502.CrossRefGoogle Scholar
  25. [25]
    A. Rindlav-Westling and P. Gatenholm: “Surface composition and morphology of starch, amylose, and amylopectin films”, Biomacromolecules, Vol. 4, (2003), pp. 166–172.CrossRefGoogle Scholar
  26. [26]
    A. Ramanaviciene and A. Ramanavicius: “Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins”, Biosens. Bioelectron., Vol. 20, (2004), pp. 1076–1082.CrossRefGoogle Scholar
  27. [27]
    A. Ramanaviciene, G. Stalnionis and A. Ramanavicius: “Piezoelectric affinity sensor for detection of bovine leukaemia”, Biologija, Vol. 1, (2004), pp. 33–35.Google Scholar
  28. [28]
    A. Ramanaviciene and A. Ramanavicius: “Application of polypyrrole for the creation of immunosensors”, Crit. Rev. Anal. Chem., Vol. 32, (2002), pp. 331–336.CrossRefGoogle Scholar
  29. [29]
    A. Ramanaviciene and A. Ramanavicius: “Pulsed amperometric detection of DNA with an ssDNA/polypyrrole modified electrode”, J. Anal. Bioanal. Chem., Vol. 379, (2004), pp. 287–293.CrossRefGoogle Scholar
  30. [30]
    A.S. Tatham, N.H. Thomson, T.J. McMaster, A.D.L. Humphris, M.J. Miles and P.R. Shewry: “Scanning Probe Microscopy Studies of Cereal Seed Storage Protein Structures Scanning”, Scanning, Vol. 21, (1999), pp. 293–298.CrossRefGoogle Scholar
  31. [31]
    S. Scheuring, D. Fotiadis, C. Möller, S.A. Müller, A. Engel and D.J. Müller: “Single proteins observed by atomic force microscopy”, Single Mol., Vol. 2, (2001), pp. 59–67.CrossRefGoogle Scholar
  32. [32]
    M.C. Coen, R. Lehmann, P. Groening, M. Bielmann, C. Galli and L. Schlapbach: “Adsorption and biactivity of protein A on silicon surfaces studied by AFM and XPS”, J. Colloid Interface Sci., Vol. 233, (2001), pp. 180–189.CrossRefGoogle Scholar
  33. [33]
    A. Ramanaviciene, J. Acaite and A. Ramanavicius: “Prevalence of viral infections in ecologically different districts and a new electrochemical immunoassay”, Acta Med. Lituanica, Vol. 8, (2001), pp. 224–229.Google Scholar
  34. [34]
    O.H. Willemsen, M.M. Snel, K.O. van der Werf, B.G. de Grooth, J. Greve, P. Hinterdorfer, H.J. Gruber, H. Schindler, Y. van Kooyk and C.G Figdor: “Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy”, Biophys. J., Vol. 75, (1998), pp. 2220–2228.Google Scholar
  35. [35]
    P.C. Zhang, C. Bai, P.K. Ho, Y. Dai and Y.S. Wu: “Observing interactions between the IgG antigen and anti-IgG antibody with AFM”, IEEE Eng. Med. Biol. Mag., Vol. 16, (1997), pp. 42–46.CrossRefGoogle Scholar
  36. [36]
    Q. Weiping, X. Bin, W. Lei, W. Chunxiao, Y. Danfeng, Y. Fang, Y. Chunwei and W. Yu: “Controlled site-directed assembly of antibodies by their oligosaccharide moieties onto APTES derivatized surfaces”, J. Colloid Interface Sci., Vol. 214, (1999), pp. 16–19.CrossRefGoogle Scholar
  37. [37]
    U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, D. Dreier, W. Huber and H.J. Güntherodt: “Specific antigen/antibody interactions measured by force microscopy”, Biophys. J., Vol. 70, (1996), pp. 2437–2441.CrossRefGoogle Scholar
  38. [38]
    C.J. Roberts, M.C. Davies, S.J. Tendler, P.M. Williams, J. Davies, A.C. Dawles, G.D. Yearwood and J.C. Edwards: “The discrimination of IgM and IgG type antibodies and Fab' and F(ab)2 antibody fragments on an industrial substrate using scanning force micrscopy”, Ultramicroscopy, Vol. 62, (1996), pp.149–155.CrossRefGoogle Scholar
  39. [39]
    Y. Dong and C. Shannon: “Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection”, Anal. Chem., Vol. 72, (2000), pp. 2371–2376.CrossRefGoogle Scholar

Copyright information

© Central European Science Journals Warsaw and Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Almira Ramanaviciene
    • 1
    • 2
  • Valentinas Snitka
    • 3
  • Rasa Mieliauskiene
    • 1
  • Rolandas Kazlauskas
    • 1
  • Arunas Ramanavicius
    • 1
    • 2
  1. 1.Department of Analytical and Environmental ChemistryVilnius UniversityVilnius 09Lithuania
  2. 2.Sector of Immunoanalysis and Informatics, Institute of ImmunologyVilnius UniversityVilnius 21Lithuania
  3. 3.Research Center for Microsystems and NanotechnologyKaunas University of TechnologyKaunasLithuania

Personalised recommendations