Environmental Exposures, the Epigenome, and African American Women’s Health

  • Joyce E. OhmEmail author


Stress is a common feature of modern life, but both the extent of exposure to stressors and the downstream effects of these stress exposures can vary considerably among individuals, communities, and populations. When individuals are exposed to repeated or chronic stress, wear and tear on the body can accumulate and manifest in many ways. The term “allostatic load” represents the physiological consequences of repeated or chronic exposure to environmental stressors and is linked to fluctuating and/or heightened neural or neuroendocrine responses. African American women are one population subgroup that has been identified as potentially having both an elevated allostatic load and an enhanced resilience to external factors. One mechanism by which environmental stressors may impact human health is via epigenetic remodeling of the genome. This review will focus on what is known about how different types of environmental stressors may affect the epigenome and explore links between epigenetic reprogramming and altered allostatic load and resilience as it pertains to African American women’s health.


Allostatic load Epigenetics Stress 



Grant support from the NIH (ES022030) awarded to J.E.O. is acknowledged.


  1. 1.
    McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153(18):2093–101.CrossRefPubMedGoogle Scholar
  2. 2.
    Logan JG, Barksdale DJ. Allostasis and allostatic load: expanding the discourse on stress and cardiovascular disease. J Clin Nurs. 2008;17(7B):201–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Edes AN, Crews DE. Allostatic load and biological anthropology. Am J Phys Anthropol. 2017;162 Suppl 63:44–70.PubMedGoogle Scholar
  4. 4.
    Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011;2(6):607–17.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196(2):261–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.PubMedGoogle Scholar
  9. 9.
    Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55(20):4531–5.PubMedGoogle Scholar
  10. 10.
    Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Maurano Matthew T, Wang H, John S, et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 2015;12(7):1184–95.CrossRefPubMedGoogle Scholar
  12. 12.
    Edgar R, Tan PP, Portales-Casamar E, Pavlidis P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin. 2014;7(1):28.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145(3):423–34.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011;147(7):1498–510.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14(12):1607–16.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li W, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids. 2011;2011:870726.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li S, Papale LA, Zhang Q, et al. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress. Neurobiol Dis. 2016;86:99–108.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou M, Pasa-Tolic L, Stenoien DL. Profiling of histone post-translational modifications in mouse brain with high-resolution top-down mass spectrometry. J Proteome Res. 2017;16(2):599–608.
  22. 22.
    Zhang J, Parvin J, Huang K. Redistribution of H3K4me2 on neural tissue specific genes during mouse brain development. BMC Genomics. 2012;13(Suppl 8):S5.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Pekowska A, Benoukraf T, Ferrier P, Spicuglia S. A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res. 2010;20(11):1493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 2016;17(12):3369–84.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Taouis M. MicroRNAs in the hypothalamus. Best Pract Res Clin Endocrinol Metab. 2016;30(5):641–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Rao YS, Pak TR. MicroRNAs and the adolescent brain: filling the knowledge gap. Neurosci Biobehav Rev. 2016;70:313–22.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308(5723):833–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Ramey SL, Schafer P, DeClerque JL, et al. The preconception stress and resiliency pathways model: a multi-level framework on maternal, paternal, and child health disparities derived by community-based participatory research. Matern Child Health J. 2015;19(4):707–19.CrossRefPubMedGoogle Scholar
  29. 29.
    Dahlen HG, Kennedy HP, Anderson CM, Bell AF, Clark A, Foureur M, et al. The EPIIC hypothesis: intrapartum effects on the neonatal epigenome and consequent health outcomes. Med Hypotheses. 2013;80(5):656–62.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Saban KL, Mathews HL, DeVon HA, Janusek LW. Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis. 2014;5(5):346–55.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Djuric Z, Bird CE, Furumoto-Dawson A, Rauscher GH, Ruffin IV MT, Stowe RP, et al. Biomarkers of psychological stress in health disparities research. Open Biomark J. 2008;1(1):7–19.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rubin LP. Maternal and pediatric health and disease: integrating biopsychosocial models and epigenetics. Pediatr Res. 2016;79(1–2):127–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.CrossRefGoogle Scholar
  36. 36.
    Chen E, Miller GE, Yu T, Brody GH. The great recession and health risks in African American youth. Brain Behav Immun. 2016;53:234–41.CrossRefPubMedGoogle Scholar
  37. 37.
    Newman LA, Kaljee LM. Health disparities and triple-negative breast Cancer in African American women: a review. JAMA Surg. May 1 2017;152(5):485–93.CrossRefPubMedGoogle Scholar
  38. 38.
    Barcelona de Mendoza V, Wright ML, Agaba C, Prescott L, Desir A, Crusto CA, et al. A systematic review of DNA methylation and preterm birth in African American women. Biol Res Nurs. 2017;19(3):308–17.CrossRefPubMedGoogle Scholar
  39. 39.
    Wright ML, Huang Y, Hui Q, Newhall K, Crusto C, Sun YV, et al. Parenting stress and DNA methylation among African Americans in the InterGEN study. J Clin Transl Sci. 2017;1(6):328–33.CrossRefPubMedGoogle Scholar
  40. 40.
    de Mendoza VB, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived racial discrimination and DNA methylation among African American women in the InterGEN study. Biol Res Nurs. 2018;20(2):145–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Brody GH, Miller GE, Yu T, Beach SR, Chen E. Supportive family environments ameliorate the link between racial discrimination and epigenetic aging: a replication across two longitudinal cohorts. Psychol Sci. 2016;27(4):530–41.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The New York Academy of Medicine 2018

Authors and Affiliations

  1. 1.Department of Genetics and GenomicsRoswell Park Comprehensive Cancer CenterBuffaloUSA

Personalised recommendations