Journal of Urban Health

, Volume 93, Issue 1, pp 73–95 | Cite as

How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review

  • Anne Dorothée Slovic
  • Maria Aparecida de Oliveira
  • João Biehl
  • Helena Ribeiro


Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.


Megacities Climate change Urban health Air pollution Public policy Vehicle emissions Air quality control 


  1. 1.
    Cifuentes L, Borja-Aburto VH, Gouveia N, Thurston G, Davis DL. Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000–2020): Santiago, Sao Paulo, Mexico City and New York City. Environ Health Perspect. 2001; 109: 419. doi: 10.2307/3434790.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Strefler J, Luderer G, Kriegler E, Meinshausen M. Can air pollutant controls change global warming? Environ Sci Pol. 2014; 41: 33–43. doi: 10.1016/j.envsci.2014.04.009.CrossRefGoogle Scholar
  3. 3.
    Worden HM, Cheng Y, Pfister G, Carmichael GR, Zhang Q, Streets DG, Worden JR. Satellite-based estimates of reduced CO and CO2 emissions due to traffic restrictions during the 2008 Beijing Olympics. Geophys Res Lett. 2012; 39(14). doi:  10.1029/2012GL052395.
  4. 4.
    United Nations. World urbanization prospects, the 2014 revision. doi:  10.4054/DemRes.2005.12.9.
  5. 5.
    Stern N. The economics of climate change. Climate Stern Rev 2007. doi:
  6. 6.
    Harlan SL, Ruddell DM. Climate change and health in cities: impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Curr Opin Environ Sustain. 2011; 3(3): 126–34. doi: 10.1016/j.cosust.2011.01.001.CrossRefGoogle Scholar
  7. 7.
    Castán Broto V, Bulkeley H. A survey of urban climate change experiments in 100 cities. Glob Environ Chang. 2013; 23(1): 92–102. doi: 10.1016/j.gloenvcha.2012.07.005.CrossRefGoogle Scholar
  8. 8.
    D’amato G, Baena-Cagnani CE, Cecchi L, Annesi-Maesano I, Nunes C, Ansotegui I, et al. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidiscip Respir Med. 2013; 8(1): 12. doi: 10.1186/2049-6958-8-12.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dominici F. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006; 295(10): 1127–34. doi: 10.1001/jama.295.10.1127.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ribeiro H. Queimadas de Cana-de-açúcar no Brasil: efeitos na saúde respiratória. Rev Saude Publica. 2008; 42(2): 370–6. doi: 10.1590/S0034-89102008005000009.CrossRefPubMedGoogle Scholar
  11. 11.
    Tseng RY, Li CK, Spinks J. Particulate air pollution and hospitalization for asthma. Ann Allergy. 1992; 68(5): 425–32.PubMedGoogle Scholar
  12. 12.
    Vanos JK, Hebbern C, Cakmak S. Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 Canadian cities. Environ Pollut. 2014; 185: 322–32. doi: 10.1016/j.envpol.2013.11.007. Barking, Essex : 1987.CrossRefPubMedGoogle Scholar
  13. 13.
    Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet. 2002; 360(9341): 1210–4. doi: 10.1016/S0140-6736(02)11281-5.CrossRefPubMedGoogle Scholar
  14. 14.
    Pope CA, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009; 360(4): 376–86. doi: 10.1056/NEJMsa0805646.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen YL, Shih YH, Tseng CH, Kang SY, Wang HC. Economic and health benefits of the co-reduction of air pollutants and greenhouse gases. Mitig Adapt Strateg Glob Chang. 2013; 18(8): 1125–39. doi: 10.1007/s11027-012-9413-3.CrossRefGoogle Scholar
  16. 16.
    Ebi K. Health in the new scenarios for climate change research. Int J Environ Res Public Health. 2013; 11(1): 30–46. doi: 10.3390/ijerph110100030.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    West JJ, Fiore AM, Horowitz LW, Mauzerall DL. Global health benefits of mitigating ozone pollution with methane emission controls. Proc Natl Acad Sci U S A. 2006. doi: 10.1073/pnas.0600201103.Google Scholar
  18. 18.
    Molina MJ, Molina LT. Megacities and atmospheric pollution. J Air Waste Manag Assoc. 2007; 54(6): 644–80. doi: 10.1080/10473289.2004.10470995.CrossRefGoogle Scholar
  19. 19.
    Bell ML, Davis DL, Gouveia N, Borja-Aburto VH, Cifuentes LA. The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo and Mexico City. Environ Res. 2006; 100(3): 431–40. doi: 10.1016/j.envres.2005.08.002.CrossRefPubMedGoogle Scholar
  20. 20.
    Fang Y, Mauzerall DL, Liu J, Fiore AM, Horowitz LW. Impacts of 21st century climate change on global air pollution-related premature mortality. Clim Chang. 2013; 121(2): 239–53. doi: 10.1007/s10584-013-0847-8.CrossRefGoogle Scholar
  21. 21.
    Walsh MP. Ancillary benefits for climate change mitigation and air pollution control in the world’s motor vehicle fleets. Annu Rev Public Health. 2008; 29: 1–9. doi: 10.1146/annurev.publhealth.29.091307.183257.CrossRefPubMedGoogle Scholar
  22. 22.
    Wright L, Fulton L. Climate change mitigation and transport in developing nations. Transp Rev. 2005; 25(6): 691–717. doi: 10.1080/01441640500360951.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Douglas MJ, Watkins SJ, Gorman DR, Higgins M. Are cars the new tobacco? J Pub Health. 2011; 33(2): 160–9. doi: 10.1093/pubmed/fdr032.CrossRefGoogle Scholar
  25. 25.
    Parrish DD, Singh HB, Molina L, Madronich S. Air quality progress in North American megacities: a review. Atmos Environ. 2011; 45(39): 7015–25. doi: 10.1016/j.atmosenv.2011.09.039.CrossRefGoogle Scholar
  26. 26.
    Benmarhnia T, Rey L, Cartier Y, Clary CM, Deguen S, Brousselle A. Addressing equity in interventions to reduce air pollution in urban areas: a systematic review. Int J Pub Health. 2014; 59(6): 933–44. doi: 10.1007/s00038-014-0608-0.CrossRefGoogle Scholar
  27. 27.
    Thambiran T, Diab RD. The case for integrated air quality and climate change policies. Environ Sci Pol. 2011; 14(8): 1008–17. doi: 10.1016/j.envsci.2011.08.002.CrossRefGoogle Scholar
  28. 28.
    Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf Libr J. 2009; 26(2): 91–108. doi: 10.1111/j.1471-1842.2009.00848.x.CrossRefGoogle Scholar
  29. 29.
    Fajersztajn L, Veras M, Barrozo LV, Saldiva P. Air monitoring coverage in low-income countries: an observational study. 2014.Google Scholar
  30. 30.
    OECD. OECD environmental outlook to 2050: the consequences of inaction. Outlook. 2012. doi: 10.1787/9789264122246-en.Google Scholar
  31. 31.
    Ahmad SS, Aziz N. Spatial and temporal analysis of ground level ozone and nitrogen dioxide concentration across the twin cities of Pakistan. Environ Monit Assess. 2013; 185(4): 3133–47. doi: 10.1007/s10661-012-2778-7.CrossRefPubMedGoogle Scholar
  32. 32.
    Goswami P, Baruah J. Simulation of daily variation of suspended particulate matter over Delhi: relative roles of vehicular emission, dust and domestic appliances. Mon Weather Rev. 2008; 136(9): 3597–607. doi: 10.1175/2008MWR2386.1.CrossRefGoogle Scholar
  33. 33.
    Ho KF, Lee SC, Louie PKK, Zou SC. Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmos Environ. 2002; 36(8): 1259–65. doi: 10.1016/S1352-2310(01)00570-2.CrossRefGoogle Scholar
  34. 34.
    Liang MS, Keener TC, Birch ME, Baldauf R, Neal J, Yang YJ. Low-wind and other microclimatic factors in near-road black carbon variability: a case study and assessment implications. Atmos Environ. 2013; 80: 204–15. doi: 10.1016/j.atmosenv.2013.07.057.CrossRefGoogle Scholar
  35. 35.
    Megaritis G, Fountoukis C, Charalampidis PE, Pilinis C, Pandis SN. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmos Chem Phys. 2013; 13(6): 3423–43. doi: 10.5194/acp-13-3423-2013.CrossRefGoogle Scholar
  36. 36.
    Mohan M, Kandya A. An analysis of the annual and seasonal trends of air quality index of Delhi. Environ Monit Assess. 2007; 131(1–3): 267–77. doi: 10.1007/s10661-006-9474-4.CrossRefPubMedGoogle Scholar
  37. 37.
    Rutty M, Matthews L, Andrey J, Matto TD. Eco-driver training within the city of Calgary’s municipal fleet: monitoring the impact. Transp Res Part D: Transp Environ. 2013; 24: 44–51. doi: 10.1016/j.trd.2013.05.006.CrossRefGoogle Scholar
  38. 38.
    Dirgahayani P. Environmental co-benefits of public transportation improvement initiative: the case of Trans-Jogja bus system in Yogyakarta, Indonesia. J Clean Prod. 2013; 58: 74–81. doi: 10.1016/j.jclepro.2013.07.013.CrossRefGoogle Scholar
  39. 39.
    Doll CNH, Balaban O. A methodology for evaluating environmental co-benefits in the transport sector: application to the Delhi metro. J Clean Prod. 2013; 58: 61–73. doi: 10.1016/j.jclepro.2013.07.006.CrossRefGoogle Scholar
  40. 40.
    Garg A. Pro-equity effects of ancillary benefits of climate change policies: a case study of human health impacts of outdoor air pollution in New Delhi. World Dev. 2011; 39(6): 1002–25. doi: 10.1016/j.worlddev.2010.01.003.CrossRefGoogle Scholar
  41. 41.
    Li J. Decoupling urban transport from GHG emissions in Indian cities—a critical review and perspectives. Energ Policy. 2011; 39(6): 3503–14. doi: 10.1016/j.enpol.2011.03.049.CrossRefGoogle Scholar
  42. 42.
    Reynolds CCO, Kandlikar MM. Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi. Environ Sci Technol. 2008; 42(16): 5860–5. doi: 10.1021/es702863p.CrossRefPubMedGoogle Scholar
  43. 43.
    Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, et al. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 2009; 374(9705): 1930–43. doi: 10.1016/S0140-6736(09)61714-1.CrossRefPubMedGoogle Scholar
  44. 44.
    Yedla S, Parikh JK, Shrestha RM. Sustainable urban transportation: impact of CO2 mitigation strategies on local pollutants. Int J Environ Pollut. 2003. 19(5), 475–482. Available from
  45. 45.
    Becerra JM, Reis RS, Frank LD, Ramirez-marrero FA, Welle B, Arriaga Cordero E, Paz FM. Transport and health: a look at three Latin American cities. Cadernos de Saúde Pública. 2013. 29(4), 654–66. Available from
  46. 46.
    Creutzig F, He D. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transp Res Part D: Transp Environ. 2009; 14(2): 120–31. doi: 10.1016/j.trd.2008.11.007.CrossRefGoogle Scholar
  47. 47.
    Wang X, Westerdahl D, Hu J, Wu Y, Yin H, Pan X, et al. On-road diesel vehicle emission factors for nitrogen oxides and black carbon in two Chinese cities. Atmos Environ. 2012; 46: 45–55. doi: 10.1016/j.atmosenv.2011.10.033.CrossRefGoogle Scholar
  48. 48.
    Wang X, Westerdahl D, Wu Y, Pan X, Zhang KM. On-road emission factor distributions of individual diesel vehicles in and around Beijing, China. Atmos Environ. 2011; 45(2): 503–13. doi: 10.1016/j.atmosenv.2010.09.014.CrossRefGoogle Scholar
  49. 49.
    Geng Y, Ma Z, Xue B, Ren W, Liu Z, Fujita T. Co-benefit evaluation for urban public transportation sector—a case of Shenyang, China. J Clean Prod. 2013; 58(SI): 82–91. doi: 10.1016/j.jclepro.2013.06.034.CrossRefGoogle Scholar
  50. 50.
    Atkinson RW, Barratt B, Armstrong B, Anderson HR, Beevers SD, Mudway IS, et al. The impact of the congestion charging scheme on ambient air pollution concentrations in London. Atmos Environ. 2009; 43(34): 5493–500. doi: 10.1016/j.atmosenv.2009.07.023.CrossRefGoogle Scholar
  51. 51.
    Chong U, Yim SHL, Barrett SRH, Boies AM. Air quality and climate impacts of alternative bus technologies in Greater London. Environ Sci Technol. 2014; 48(8): 4613–22. doi: 10.1021/es4055274.CrossRefPubMedGoogle Scholar
  52. 52.
    Iglesias MM, Apsimon HH. Alternative vehicle technologies and fuels in scenarios for atmospheric emissions in London. J Environ Assess Pol Manag. 2004; 6(2): 213–43. doi: 10.1142/S1464333204001638.CrossRefGoogle Scholar
  53. 53.
    Komolafe AA, Abdul-Azeez AS, Biodun AAY, Omowonuola AF, Rotimi AD. Air pollution and climate change in Lagos, Nigeria: needs for proactive approaches to risk management and adaptation. Am J Environ Sci. 2014; 10(4): 412–23. doi: 10.3844/ajessp.2014.412.423.CrossRefGoogle Scholar
  54. 54.
    Macmillan A, Connor J, Witten K, Kearns R, Rees D, Woodward A. The societal costs and benefits of commuter bicycling: simulating the effects of specific policies using system dynamics modeling. Environ Health Perspect. 2014; 122(4): 335–44. doi: 10.1289/ehp.1307250.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lindsay G, Macmillan A, Woodward A. Moving urban trips from cars to bicycles: impact on health and emissions. Aust N Z J Public Health. 2011; 35(1): 54–60. doi: 10.1111/j.1753-6405.2010.00621.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Thambiran T, Diab RD. Air pollution and climate change co-benefit opportunities in the road transportation sector in Durban, South Africa. Atmos Environ. 2011; 45(16): 2683–9. doi: 10.1016/j.atmosenv.2011.02.059.CrossRefGoogle Scholar
  57. 57.
    Moodley KG, Singh S, Govender S. Passive monitoring of nitrogen dioxide in urban air: a case study of Durban metropolis, South Africa. J Environ Manag. 2011; 92(9): 2145–50. doi: 10.1016/j.jenvman.2011.03.040.CrossRefGoogle Scholar
  58. 58.
    Shrestha SR, Kim Oanh NT, Xu Q, Rupakheti M, Lawrence MG. Analysis of the vehicle fleet in the Kathmandu valley for estimation of environment and climate co-benefits of technology intrusions. Atmos Environ. 2013; 81: 579–90. doi: 10.1016/j.atmosenv.2013.09.050.CrossRefGoogle Scholar
  59. 59.
    Kantor I, Fowler MW, Hajimiragha A, Elkamel A. Air quality and environmental impacts of alternative vehicle technologies in Ontario, Canada. Int J Hydrog Energy. 2010; 35(10): 5145–53. doi: 10.1016/j.ijhydene.2009.08.071.CrossRefGoogle Scholar
  60. 60.
    Brady J, O’Mahony M. Travel to work in Dublin. The potential impacts of electric vehicles on climate change and urban air quality. Transp Res Part D: Transp Environ. 2011; 16(2): 188–93. doi: 10.1016/j.trd.2010.09.006.CrossRefGoogle Scholar
  61. 61.
    Vedrenne M, Pérez J, Lumbreras J, Rodríguez ME. Life cycle assessment as a policy-support tool: the case of taxis in the city of Madrid. Energ Policy. 2014; 66: 185–97. doi: 10.1016/j.enpol.2013.10.07.CrossRefGoogle Scholar
  62. 62.
    Jiang P, Chen Y, Geng Y, Dong W, Xue B, Xu B, et al. Analysis of the co-benefits of climate change mitigation and air pollution reduction in China. J Clean Prod. 2013; 58: 130–7. doi: 10.1016/j.jclepro.2013.07.042.CrossRefGoogle Scholar
  63. 63.
    Wadud Z, Khan T. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh. Environ Sci Technol. 2013; 47(24): 13907–16. doi: 10.1021/es402338b.CrossRefPubMedGoogle Scholar
  64. 64.
    Mazzi EA, Dowlatabadi H. Air quality impacts of climate mitigation: UK policy and passenger vehicle choice. Environ Sci Technol. 2007; 41(2): 387–92. doi: 10.1021/es060517w.CrossRefPubMedGoogle Scholar
  65. 65.
    Labriet M, Caldes N, Izquierdo L. A review on urban air quality, global climate change and CDM issues in the transportation sector. I J Glob Warm. 2009; 1(1/2/3): 144. doi: 10.1504/IJGW.2009.027086.CrossRefGoogle Scholar
  66. 66.
    Li Y, Crawford-Brown DJ. Assessing the co-benefits of greenhouse gas reduction: health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand. Sci Total Environ. 2011; 409(10): 1774–85. doi: 10.1016/j.scitotenv.2011.01.051.CrossRefPubMedGoogle Scholar
  67. 67.
    Beevers SD, Carslaw DC. The impact of congestion charging on vehicle emissions in London. Atmos Environ. 2005; 39(1): 1–5. doi: 10.1016/j.atmosenv.2004.10.001.CrossRefGoogle Scholar
  68. 68.
    Bell D. Climate change and human rights. Wiley Interdiscip Rev Clim Chang. 2013; 4(3): 159–70. doi: 10.1002/wcc.218.CrossRefGoogle Scholar
  69. 69.
    Maantay J. Asthma and air pollution in the Bronx: methodological and data considerations in using GIS for environmental justice and health research. Health Place. 2007; 13(1): 32–56. doi: 10.1016/j.healthplace.2005.09.009.CrossRefPubMedGoogle Scholar
  70. 70.
    Swart R, Amann M, Raes F, Tuinstra W. A good climate for clean air: linkages between climate change and air pollution. An editorial essay. Clim Chang. 2004; 66(3): 263–9. doi: 10.1023/B:CLIM.0000044677.41293.39.CrossRefGoogle Scholar
  71. 71.
    Boyce JK, Pastor M. Clearing the air: incorporating air quality and environmental justice into climate policy. Clim Chang. 2013; 120(4): 801–14. doi: 10.1007/s10584-013-0832-2.CrossRefGoogle Scholar
  72. 72.
    O’Neill MS, Kinney PL, Cohen AJ. Environmental equity in air quality management: local and international implications for human health and climate change. J Toxic Environ Health A. 2008; 71(9–10): 570–7. doi: 10.1080/15287390801997625.CrossRefGoogle Scholar
  73. 73.
    Moellendorf D. Climate change and global justice. Wiley Interdiscip Rev Clim Chang. 2012; 3(2): 131–43. doi: 10.1002/wcc.158.CrossRefGoogle Scholar
  74. 74.
    Bulkeley H, Betsill M. Rethinking sustainable cities: multilevel governance and the “urban” politics of climate change. Environ Politic. 2005; 14(1): 42–63. doi: 10.1080/0964401042000310178.CrossRefGoogle Scholar
  75. 75.
    Ostrom E. A polycentric approach for coping with climate change. World bank policy research working paper 5095. 2009. 56.Google Scholar
  76. 76.
    Becerra JM, Reis RS, Frank LD, Ramirez-Marrero FA, Welle B, Cordero EA, Paz FM, Crespo C, Dijon V, Jacoby E, Dill J, Weigand L, Padin CM. Transport and health: a look at three latin american cities. Cad. Saúde Pública. 2013. doi: 10.1590/S0102-311X2013000400004.
  77. 77.
    Rayle L, Madhav P. Scenarios for Furture urbanization: carbon dioxide emissions from passanger travel in three indian cities. Transportation research record: J Transp Res Board. 2010. doi: 10.3141/2193-15.

Copyright information

© The New York Academy of Medicine 2015

Authors and Affiliations

  • Anne Dorothée Slovic
    • 1
  • Maria Aparecida de Oliveira
    • 1
  • João Biehl
    • 2
  • Helena Ribeiro
    • 1
  1. 1.School of Public HealthUniversity of São PauloSão PauloBrazil
  2. 2.Department of Anthropology and Woodrow Wilson School of Public and International AffairsPrinceton UniversityPrincetonUSA

Personalised recommendations