Skip to main content
Log in

Acquired Resistance to Erlotinib in EGFR Mutation-Positive Lung Adenocarcinoma among Hispanics (CLICaP)

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Lung cancer harboring epidermal growth factor receptor (EGFR) mutations and treated with EGFR tyrosine kinase inhibitors (TKIs) all eventually develop acquired resistance to the treatment, with half of the patients developing EGFR T790M resistance mutations.

Objective

The purpose of this study was to assess histological and clinical characteristics and survival outcomes in Hispanic EGFR mutated lung cancer patients after disease progression.

Patients and Methods

EGFR mutation-positive lung cancer patients (n = 34) with acquired resistance to the EGFR-TKI erlotinib were identified from 2011 to 2015. Post-progression tumor specimens were collected for molecular analysis. Post-progression interventions, response to treatment, and survival were assessed and compared among all patients and those with and without T790M mutations.

Results

Mean age was 59.4 ± 13.9 years, 65% were never-smokers, and 53% had a performance status 0–1. All patients received erlotinib as first-line treatment. Identified mutations included: 60% DelE19 (Del746–750) and 40% L858R. First-line erlotinib overall response rate (ORR) was 61.8% and progression free survival (PFS) was 16.8 months (95% CI: 13.7–19.9). Acquired resistance mutations identified were T790M mutation (47.1%); PI3K mutations (14.7%); EGFR amplification (14.7%); KRAS mutation (5.9%); MET amplification (8.8%); HER2 alterations (5.9%, deletions/insertions in e20); and SCLC transformation (2.9%). Of patients, 79.4% received treatment after progression. ORR for post-erlotinib treatment was 47.1% (CR 2/PR 14) and median PFS was 8.3 months (95% CI: 2.2–36.6). Median overall survival (OS) from treatment initiation was 32.9 months (95% CI: 30.4–35.3), and only the use of post-progression therapy affected OS in a multivariate analysis (p = 0.05).

Conclusions

Hispanic patients with acquired resistance to erlotinib continued to be sensitive to other treatments after progression. The proportion of T790M+ patients appears to be similar to that previously reported in Caucasians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 Lyon, France. http://globocan.iarc.fr. Accessed 27 Aug 2016.

  2. Brambilla E, Travis WD. Lung cancer. In: Stewart BW, Wild CP, editors. World cancer report. Lyon: World Health Organization; 2014.

    Google Scholar 

  3. Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24. doi:10.1111/j.1349-7006.2007.00607.x.

    Article  CAS  PubMed  Google Scholar 

  4. Sakurada A, Shepherd FA, Tsao MS. Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clin Lung Cancer. 2006;7(Suppl 4):S138–44.

    Article  CAS  PubMed  Google Scholar 

  5. Boolell V, Alamgeer M, Watkins DN, Ganju V. The evolution of therapies in non-small cell lung cancer. Cancers. 2015;7(3):1815–46. doi:10.3390/cancers7030864.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arrieta O, Cardona AF, Martin C, Mas-Lopez L, Corrales-Rodriguez L, Bramuglia G, et al. Updated frequency of EGFR and KRAS mutations in NonSmall-cell lung cancer in Latin America: the Latin-American Consortium for the investigation of lung cancer (CLICaP). J Thorac Oncol. 2015;10(5):838–43. doi:10.1097/JTO.0000000000000481.

    Article  CAS  PubMed  Google Scholar 

  7. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37(Suppl 4):S9–15.

    Article  CAS  PubMed  Google Scholar 

  8. Barron F, de la Torre-Vallejo M, Luna-Palencia RL, Cardona AF, Arrieta O. The safety of afatinib for the treatment of non-small cell lung cancer. Expert Opin Drug Saf. 2016;15(11):1563–72. doi:10.1080/14740338.2016.1236910.

    Article  CAS  PubMed  Google Scholar 

  9. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. doi:10.1126/science.1099314.

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92. doi:10.1056/NEJMoa044238.

    Article  CAS  PubMed  Google Scholar 

  11. Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005;2(11):e313. doi:10.1371/journal.pmed.0020313.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arrieta O, Cardona AF, Corrales L, Campos-Parra AD, Sanchez-Reyes R, Amieva-Rivera E, et al. The impact of common and rare EGFR mutations in response to EGFR tyrosine kinase inhibitors and platinum-based chemotherapy in patients with non-small cell lung cancer. Lung Cancer. 2015;87(2):169–75. doi:10.1016/j.lungcan.2014.12.009.

    Article  PubMed  Google Scholar 

  13. Li Z, Yu Y, Lu J, Luo Q, Wu C, Liao M, et al. Analysis of the T descriptors and other prognosis factors in pathologic stage I non-small cell lung cancer in China. J Thorac Oncol. 2009;4(6):702–9. doi:10.1097/JTO.0b013e3181a5269d.

    Article  PubMed  Google Scholar 

  14. Wang CL, Yue DS, Zhang ZF, Gong LQ, Su YJ, You J, et al. Treatment and prognostic analysis of 1638 patients with non-small cell lung cancer. Zhonghua Wai Ke Za Zhi [Chin J Surg]. 2011;49(7):618–22. doi:10.3760/cma.j.issn.0529-5815.2011.07.011.

    Google Scholar 

  15. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14. doi:10.1097/JTO.0b013e31812f3c1a.

    Article  PubMed  Google Scholar 

  16. Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7(9):493–507. doi:10.1038/nrclinonc.2010.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bianco R, Troiani T, Tortora G, Ciardiello F. Intrinsic and acquired resistance to EGFR inhibitors in human cancer therapy. Endocr Relat Cancer. 2005;12(Suppl 1):S159–71. doi:10.1677/erc.1.00999.

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro Gomes J, Cruz MR. Combination of afatinib with cetuximab in patients with EGFR-mutant non-small-cell lung cancer resistant to EGFR inhibitors. Onco Targets Ther. 2015;8:1137–42. doi:10.2147/OTT.S75388.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riely GJ, Yu HA. EGFR: the paradigm of an oncogene-driven lung cancer. Clin Cancer Res. 2015;21(10):2221–6. doi:10.1158/1078-0432.CCR-14-3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hwang KE, Jung JW, Oh SJ, Park MJ, Shon YJ, Choi KH, et al. Transformation to small cell lung cancer as an acquired resistance mechanism in EGFR-mutant lung adenocarcinoma: a case report of complete response to etoposide and cisplatin. Tumori. 2015;101(3):e96–8. doi:10.5301/tj.5000276.

    PubMed  Google Scholar 

  21. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. doi:10.1126/scitranslmed.3002003.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arrieta O, Ramirez-Tirado LA, Baez-Saldana R, Pena-Curiel O, Soca-Chafre G, Macedo-Perez EO. Different mutation profiles and clinical characteristics among Hispanic patients with non-small cell lung cancer could explain the “Hispanic paradox”. Lung Cancer. 2015;90(2):161–6. doi:10.1016/j.lungcan.2015.08.010.

    Article  PubMed  Google Scholar 

  23. Jackman D, Pao W, Riely GJ, Engelman JA, Kris MG, Janne PA, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. 2010;28(2):357–60. doi:10.1200/JCO.2009.24.7049.

    Article  CAS  PubMed  Google Scholar 

  24. Xu M, Xie Y, Ni S, Liu H. The latest therapeutic strategies after resistance to first generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) in patients with non-small cell lung cancer (NSCLC). Ann Transl Med. 2015;3(7):96. doi:10.3978/j.issn.2305-5839.2015.03.60.

    PubMed  PubMed Central  Google Scholar 

  25. Lee JC, Jang SH, Lee KY, Kim YC. Treatment of non-small cell lung carcinoma after failure of epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Res Treat. 2013;45(2):79–85. doi:10.4143/crt.2013.45.2.79.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4(6):650–61. doi:10.1158/2159-8290.CD-13-1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ilie M, Hofman V, Long E, Bordone O, Selva E, Washetine K, et al. Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med. 2014;2(11):107. doi:10.3978/j.issn.2305-5839.2014.08.11.

    PubMed  PubMed Central  Google Scholar 

  28. Chen Q, Quan Q, Ding L, Hong X, Zhou N, Liang Y, et al. Continuation of epidermal growth factor receptor tyrosine kinase inhibitor treatment prolongs disease control in non-small-cell lung cancers with acquired resistance to EGFR tyrosine kinase inhibitors. Oncotarget. 2015;6(28):24904–11. doi:10.18632/oncotarget.4570.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7. doi:10.1158/1078-0432.CCR-12-2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawano O, Sasaki H, Endo K, Suzuki E, Haneda H, Yukiue H, et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer. 2006;54(2):209–15. doi:10.1016/j.lungcan.2006.07.006.

    Article  PubMed  Google Scholar 

  31. Mino-Kenudson M. Programmed cell death ligand-1 (PD-L1) expression by immunohistochemistry: could it be predictive and/or prognostic in non-small cell lung cancer? Cancer Biol Med. 2016;13(2):157–70. doi:10.20892/j.issn.2095-3941.2016.0009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10(6):910–23. doi:10.1097/JTO.0000000000000500.

    Article  CAS  PubMed  Google Scholar 

  33. Lin C, Chen X, Li M, Liu J, Qi X, Yang W, et al. Programmed death-ligand 1 expression predicts tyrosine kinase inhibitor response and better prognosis in a cohort of patients with epidermal growth factor receptor mutation-positive lung adenocarcinoma. Clin Lung Cancer. 2015;16(5):e25–35. doi:10.1016/j.cllc.2015.02.002.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, et al. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther. 2014;7:567–73. doi:10.2147/OTT.S59959.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Handorf EA, McElligott S, Vachani A, Langer CJ, Bristol Demeter M, Armstrong K, et al. Cost effectiveness of personalized therapy for first-line treatment of stage IV and recurrent incurable adenocarcinoma of the lung. J Oncol Pract. 2012;8(5):267–74. doi:10.1200/JOP.2011.000502.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arrieta O, Anaya P, Morales-Oyarvide V, Ramirez-Tirado LA, Polanco AC. Cost-effectiveness analysis of EGFR mutation testing in patients with non-small cell lung cancer (NSCLC) with gefitinib or carboplatin-paclitaxel. Eur J Health Econ: HEPAC: Health Econ Prev Care. 2016;17(7):855–63. doi:10.1007/s10198-015-0726-5.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the generous contribution from the Silberman and Buendía families for altruistically promoting the development of cancer research in Colombia.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Andrés F. Cardona.

Ethics declarations

Funding

Funding Supported by the Foundation for Clinical and Applied Cancer Research -FICMAC (Bogotá, Colombia) research grant 018–2014.

Conflict of Interest

Andrés F. Cardona has received consulting fees or honorarium, support for travel to meetings for the study, manuscript preparation or other purposes, and payment for lectures including service on speakers bureaus from Roche, Pfizer, Bristol-Meyers Squibb, Merck, MSD, and AstraZeneca. Noemí Reguart has received consulting fees or honorarium for advisory roles, payment for lectures including service on speaker bureaus, and has given expert testimony for Boehringer Ingelheim, Roche, AstraZeneca, Bristol-Myers Squibb, and Pfizer. Luis Corrales has participated in advisory boards organized by AstraZeneca and received honoraria from AstraZeneca for lectures in scientific meetings. Carlos Ortiz has received consulting fees or honorarium for advisory boards for Pfizer, Amgen, and Roche.

All other authors declare no conflict of interest.

Disclaimer

Preliminary results from this study were previously presented during the 2015 European Cancer Congress – ESMO (25 September 2015, Vienna, Austria), during the Latin American Lung Cancer Conference - LALCA (25–27 August 2016, Panamá City, Panamá), and during the 17th World Conference on Lung Cancer – IASLC (4–7 December 2016, Vienna, Austria).

Additional information

Latin American Consortium for the Study of Lung Cancer

Electronic supplementary material

ESM 1

(PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardona, A.F., Arrieta, O., Zapata, M.I. et al. Acquired Resistance to Erlotinib in EGFR Mutation-Positive Lung Adenocarcinoma among Hispanics (CLICaP). Targ Oncol 12, 513–523 (2017). https://doi.org/10.1007/s11523-017-0497-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0497-2

Navigation