Targeted Oncology

, Volume 12, Issue 1, pp 11–18 | Cite as

The Unexpected Roles of Aurora A Kinase in Gliobastoma Recurrences

  • Estelle Willems
  • Arnaud Lombard
  • Matthias Dedobbeleer
  • Nicolas Goffart
  • Bernard Rogister
Review Article


The main obstacle for the cure of glioblastoma (GBM) is systematic tumor recurrence after treatment. More than 90 % of GBM tumors are indeed recurrent within 5 years after diagnosis and treatment. We urgently need new therapies to specifically address these deadly relapses. A major advance in the understanding of GBM recurrence is the identification of GBM-Initiating Cells (GIC), characterized by their abilities for self-renewal, multilineage differentiation, and proliferation. It appears that these features of GIC could be modulated by the mitotic kinase Aurora A (AurA). Indeed, besides its role in mitosis, AurA has recently been identified to regulate alternative functions like cell polarity, asymmetric cell division, and epithelial to mesenchymal transition. All these properties may help explain GBM therapeutic resistance and recurrence. In this review, we make the hypothesis that AurA could significantly contribute to GBM recurrences and we focus on the possible roles of AurA in GIC.


Cancer Stem Cell Normal Stem Cell Asymmetrical Cell Division Spindle Orientation Centrosome Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to David Halzen for the help in English usage and style.

Compliance with Ethical Standards


This work was supported by grants from the National Fund for Scientific Research (F.N.R.S/Télévie); the Special Funds of the University of Liège; an Anti-Cancer Center near the University of Liège and a Léon Frédéricq Grant.

Conflict of Interest

Estelle Willems, Arnaud Lombard, Matthias Dedobbeleer, Nicolas Goffart and Bernard Rogister declare no conflicts of interest.


  1. 1.
    Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neurol Oncol. 2014;16:iv1–63. doi: 10.1093/neuonc/nou223.CrossRefGoogle Scholar
  2. 2.
    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:1–18. doi: 10.1007/s00401-016-1545-1.CrossRefGoogle Scholar
  3. 3.
    Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15:455–65. doi: 10.1038/nrn3765.PubMedCrossRefGoogle Scholar
  4. 4.
    Fine H, Dear K, Loeffler J, et al. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer. 1993;71:2585–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003. doi: 10.1056/NEJMoa043331.PubMedCrossRefGoogle Scholar
  6. 6.
    Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66. doi: 10.1016/S1470-2045(09)70025-7.PubMedCrossRefGoogle Scholar
  7. 7.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96. doi: 10.1056/NEJMoa043330.PubMedCrossRefGoogle Scholar
  8. 8.
    Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8. doi: 10.1038/nature03128.PubMedGoogle Scholar
  9. 9.
    Lathia J, Mack S, Mulkearns-Hubert E, et al. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17. doi: 10.1101/gad.261982.115.tumors.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21. doi: 10.1158/0008-5472.CAN-04-1364.PubMedCrossRefGoogle Scholar
  11. 11.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. doi: 10.1038/nature03128.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhou Z, Ping Y, Yu S, et al. A novel approach to the identification and enrichment of cancer stem cells from a cultured human glioma cell line. Cancer Lett. 2015;281:92–9. doi: 10.1016/j.canlet.2009.02.033.CrossRefGoogle Scholar
  13. 13.
    Chaichana K, Zamora-Berridi G, Camara-Quintana J, Quiñones-Hinojosa A. Neurosphere assays: growth factors and hormone differences in tumor and nontumor studies. Stem Cells. 2006;24:2851–7. doi: 10.1634/stemcells.2006-0399.PubMedCrossRefGoogle Scholar
  14. 14.
    Piccirillo SGM, Combi R, Cajola L, et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene. 2009;28:1807–11. doi: 10.1038/onc.2009.27.PubMedCrossRefGoogle Scholar
  15. 15.
    Goffart N, Dedobbeleer M, Rogister B. Glioblastoma stem cells : new insights in therapeutic strategies. Future Neurol. 2014;9:1–15. doi: 10.2217/fnl.14.56.CrossRefGoogle Scholar
  16. 16.
    U.S. National Institutes of Health. Homepage. (2013). Accessed 6 July 2016.
  17. 17.
    Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64. doi: 10.1038/nrclinonc.2015.61.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Takezaki T, Hide T, Takanaga H, et al. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 2011;102:1306–12. doi: 10.1111/j.1349-7006.2011.01943.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Frei K, Gramatzki D, Tritschler I, Schroeder JJ, et al. Transforming growth factor-β pathway activity in glioblastoma. Oncotarget. 2015;6:5963–77. doi: 10.18632/oncotarget.3467.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ikushima H, Todo T, Ino Y, et al. Autocrine TGF-b signaling maintains tumorigenicity of glioma-initiating cells through sry-related HMG-Box factors. Cell Stem Cell. 2016;5:504–14. doi: 10.1016/j.stem.2009.08.018.CrossRefGoogle Scholar
  21. 21.
    Kim Y, Kim KH, Lee H, et al. Wnt activation is implicated in glioblastoma radioresistance. Lab Investig. 2012;92:466–73. doi: 10.1158/1538-7445.AM2012-3458.PubMedCrossRefGoogle Scholar
  22. 22.
    González-Gómez P, Anselmo NP, Mira H. BMPs as therapeutic targets and biomarkers in astrocytic glioma. Biomed Res Int. 2014;2014:549742. doi: 10.1155/2014/549742.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Piccirillo SGM, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444:761–5. doi: 10.1038/nature05349.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133(+)cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67. doi: 10.1186/1476-4598-5-67.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60. doi: 10.1038/nature05236.PubMedCrossRefGoogle Scholar
  26. 26.
    Venere M, Hamerlik P, Wu Q, et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ. 2014;21:258–69. doi: 10.1038/cdd.2013.136.PubMedCrossRefGoogle Scholar
  27. 27.
    Barone A, Sengupta R, Warrington NM, et al. Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma. Oncotarget. 2014;5:9811–22. doi: 10.18632/oncotarget.2443.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lim DA, Cha S, Mayo MC, et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neurol Oncol. 2007;9:424–9. doi: 10.1215/15228517-2007-023.CrossRefGoogle Scholar
  29. 29.
    Goffart N, Kroonen J, Di Valentin E, et al. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neurol Oncol. 2014;17:81–94. doi: 10.1093/neuonc/nou144.CrossRefGoogle Scholar
  30. 30.
    Ehtesham M, Winston JA, Kabos P, Thompson RC. CXCR4 expression mediates glioma cell invasiveness. Oncogene. 2006;25:2801–6. doi: 10.1038/sj.onc.1209302.PubMedCrossRefGoogle Scholar
  31. 31.
    Do Carmo A, Patricio I, Cruz MT, et al. CXCL12/CXCR4 promotes motility and proliferation of glioma cells. Cancer Biol Ther. 2010;9:9–10. doi: 10.5214/ans.0972-7531.1017207.CrossRefGoogle Scholar
  32. 32.
    De Almeida Sassi F, Lunardi Brunetto A, Schwartsmann G, Roesler RAAL. Glioma revisited: from neurogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol. 2012;537861:1–18. doi: 10.1155/2012/537861.CrossRefGoogle Scholar
  33. 33.
    Adeberg S, König L, Bostel T, et al. Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone. Int J Radiat Oncol Biol Phys. 2016;90:886–93. doi: 10.1016/j.ijrobp.2014.07.027.CrossRefGoogle Scholar
  34. 34.
    Jafri NF, Clarke JL, Weinberg V, et al. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neurol Oncol. 2013;15:91–6. doi: 10.1093/neuonc/nos268.CrossRefGoogle Scholar
  35. 35.
    Heddleston JM, Li Z, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8:3274–84. doi: 10.1016/j.surg.2006.10.010.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie M, et al. A restricted cell population propagates glioblastoma growth following chemotherapy. Nature. 2012;488:522–6. doi: 10.1038/nature11287.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gómez-López S, Lerner RG, Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci. 2014;71:575–97. doi: 10.1007/s00018-013-1386-1.PubMedCrossRefGoogle Scholar
  38. 38.
    Compton DA. Mechanism of aneuploidy. Curr Opin Cell Biol. 2011;23:109–13. doi: 10.1016/ Scholar
  39. 39.
    Hochegger H, Hégarat N, Pereira-Leal JB. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle. Open Biol. 2013;3:120185. doi: 10.1098/rsob.120185.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nikonova AS, Astsaturov I, Serebriiskii IG, et al. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci. 2013;70:661–87. doi: 10.1007/s00018-012-1073-7.PubMedCrossRefGoogle Scholar
  41. 41.
    Sakakura C, Hagiwara A, Yasuoka R, et al. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer. 2001;84:824–31. doi: 10.1054/bjoc.2000.1684.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vader G, Lens SMA. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta. 2008;1786:60–72. doi: 10.1016/j.bbcan.2008.07.003.PubMedGoogle Scholar
  43. 43.
    Ouchi M, Fujiuchi N, Sasai K, et al. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem. 2004;279:19643–8. doi: 10.1074/jbc.M311780200.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu Q, Kaneko S, Yang L, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem. 2004;279:52175–82. doi: 10.1074/jbc.M406802200.PubMedCrossRefGoogle Scholar
  45. 45.
    Gustafson WC, Meyerowitz JG, Nekritz EA, et al. Drugging MYCN through an allosteric transition in Aurora Kinase A. Cancer Cell. 2014;26:414–27. doi: 10.1016/j.ccr.2014.07.015.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sun C, Chan F, Briassouli P, Linardopoulos S. Aurora kinase inhibition downregulates NF-kB and sensitises tumour cells to chemotherapeutic agents. Biochem Biophys Res Commun. 2007;352:220–5. doi: 10.1016/j.bbrc.2006.11.004.PubMedCrossRefGoogle Scholar
  47. 47.
    Dutta-Simmons J, Zhang Y, Gorgun G, et al. Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood. 2009;114:2699–708. doi: 10.1182/blood-2008-12-194290.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang X, Zhou Y-X, Qiao W, et al. Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene. 2006;25:7148–58. doi: 10.1038/sj.onc.1209707.PubMedCrossRefGoogle Scholar
  49. 49.
    Farruggio DC, Townsley FM, Ruderman JV. Cdc20 associates with the kinase aurora2/Aik. Proc Natl Acad Sci U S A. 1999;96:7306–11. doi: 10.1073/pnas.96.13.7306.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lehman NL, O’Donnell JP, Whiteley LJ, et al. Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma, and is a potential chemotherapeutic target in gliomas. Cell Cycle. 2012;11:489–502. doi: 10.4161/cc.11.3.18996.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Samaras V, Stamatelli A, Samaras E, et al. Comparative immunohistochemical analysis of aurora-A and aurora-B expression in human glioblastomas. Associations with proliferative activity and clinicopathological features. Pathol Res Pract. 2009;205:765–73. doi: 10.1016/j.prp.2009.06.011.PubMedCrossRefGoogle Scholar
  52. 52.
    Klein A, Reichardt W, Jung V, Zang KD, Meese E, Urbschat S. Overexpression and amplification of STK15 in human gliomas. Int J Oncol. 2004;25:1789–94. doi: 10.3892/ijo.25.6.1789.PubMedGoogle Scholar
  53. 53.
    Loh J-K, Lieu A-S, Chou C-H, et al. Differential expression of centrosomal proteins at different stages of human glioma. BMC Cancer. 2010;10:268. doi: 10.1186/1471-2407-10-268.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hong X, O’Donnell JP, Salazar CR, et al. The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemother Pharmacol. 2014;73:983–90. doi: 10.1007/s00280-014-2430-z.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li N, Maly DJ, Chanthery YH, et al. Radiotherapy followed by Aurora Kinase inhibition targets tumor-propagating cells in human glioblastoma. Mol Cancer Ther. 2015;14:419–28. doi: 10.1158/1535-7163.MCT-14-0526.PubMedCrossRefGoogle Scholar
  56. 56.
    Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science. 2007;315:518–21. doi: 10.1126/science.1134910.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Knoblich JA. Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol. 2010;11:849–60. doi: 10.1038/nrm3010.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lee CY, Andersen RO, Cabernard C, et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 2006;20:3464–74. doi: 10.1101/gad.1489406.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Johnston CA, Hirono K, Prehoda KE, Doe CQ. Building cortical polarity in a cell line: identification of an Aurora-A/PinsLINKER spindle orientation pathway. Cell. 2009;138:1150–63. doi: 10.1016/j.cell.2009.07.041.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wang H, Ouyang Y, Somers WG, et al. Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature. 2007;449:96–100. doi: 10.1038/nature06056.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wirtz-Peitz F, Nishimura T, Knoblich JA. Linking cell cycle to asymmetric division: Aurora-A phosphorylates the par complex to regulate numb localization. Cell. 2008;135:161–73. doi: 10.1016/j.cell.2008.07.049.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wang H, Somers GW, Bashirullah A, et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 2006;20:3453–63. doi: 10.1101/gad.1487506.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Castellanos E, Dominguez P, Gonzalez C. Centrosome dysfunction in drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol. 2008;18:1209–14. doi: 10.1016/j.cub.2008.07.029.PubMedCrossRefGoogle Scholar
  64. 64.
    Wu M, Kwon HY, Rattis F, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell. 2007;1:541–54. doi: 10.1016/j.stem.2007.08.009.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cicalese A, Bonizzi G, Pasi CE, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2016;138:1083–95. doi: 10.1016/j.cell.2009.06.048.CrossRefGoogle Scholar
  66. 66.
    Sugiarto S, Persson AI, Munoz EG, et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20:328–40. doi: 10.1016/j.ccr.2011.08.011.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wang J, Zhu HH, Chu M, et al. Symmetrical and asymmetrical division analysis provides evidence for a hierarchy of prostate epithelial cell lineages. Nat Commun. 2014;28:4758. doi: 10.1038/ncomms5758.CrossRefGoogle Scholar
  68. 68.
    Lathia JD, Hitomi M, Gallagher J, et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2011;2:e200. doi: 10.1038/cddis.2011.80.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68. doi: 10.1038/nrc2499.PubMedCrossRefGoogle Scholar
  70. 70.
    Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34. doi: 10.1007/s10911-010-9178-9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Davies J. Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Acta Anat. 1996;156:187–201.PubMedCrossRefGoogle Scholar
  72. 72.
    Cheng GZ, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87. doi: 10.1158/0008-5472.CAN-06-1479.PubMedCrossRefGoogle Scholar
  73. 73.
    Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-Cadherin and induces invasion. Mol Cell. 2016;7:1267–78. doi: 10.1016/S1097-2765(01)00260-X.CrossRefGoogle Scholar
  74. 74.
    Hartwell KA, Muir B, Reinhardt F, et al. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci U S A. 2006;103:18969–74. doi: 10.1073/pnas.0608636103.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol. 2002;487–94. doi: 10.1038/ncb807.
  76. 76.
    Mani SA, Yang J, Brooks M, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci U S A. 2007;104:10069–74. doi: 10.1073/pnas.0703900104.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28. doi: 10.1038/nrc2131.PubMedCrossRefGoogle Scholar
  78. 78.
    Morel A-P, Lièvre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3:e2888. doi: 10.1371/journal.pone.0002888.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mani SA, Guo W, Liao M, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15. doi: 10.1016/j.cell.2008.03.027.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Camand E, Peglion F, Osmani N, et al. N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J Cell Sci. 2012;125:844–57. doi: 10.1242/jcs.087668.PubMedCrossRefGoogle Scholar
  81. 81.
    Duenisch P, Reichart R, Mueller U, et al. Neural cell adhesion molecule isoform 140 declines with rise of WHO grade in human gliomas and serves as indicator for the invasion zone of multiform glioblastomas and brain metastases. J Cancer Res Clin Oncol. 2010;137:399–414. doi: 10.1007/s00432-010-0888-6.PubMedCrossRefGoogle Scholar
  82. 82.
    Amoureux M-C, Coulibaly B, Chinot O, et al. Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer. 2010;10:1–12. doi: 10.1186/1471-2407-10-91.CrossRefGoogle Scholar
  83. 83.
    Joseph JV, Conroy S, Pavlov K, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α–ZEB1 axis. Cancer Lett. 2015;359:107–16. doi: 10.1016/j.canlet.2015.01.010.PubMedCrossRefGoogle Scholar
  84. 84.
    Elias MC, Tozer KR, Silber JR, et al. TWIST is expressed in human gliomas and promotes invasion. Neoplasia. 2005;7:824–37.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Motta FJN, Valera ET, Lucio-Eterovic AKB, et al. Differential expression of E-cadherin gene in human neuroepithelial tumors. Genet Mol Res. 2008;7:295–304. doi: 10.4238/vol7-2gmr424.PubMedCrossRefGoogle Scholar
  86. 86.
    Han S-P, Kim J-H, Han M-E, et al. SNAI1 is involved in the proliferation and migration of glioblastoma cells. Cell Mol Neurobiol. 2011;31:489–96. doi: 10.1007/s10571-010-9643-4.PubMedCrossRefGoogle Scholar
  87. 87.
    Verhaak GH, Hoadley C, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer. 2010;19:38–46. doi: 10.1016/j.ccr.2009.12.020.An.Google Scholar
  88. 88.
    Sturm D, Bender S, Jones DTW, et al. Paediatric and adult glioblastoma: multiform (epi)genomic Culprits Emerge. Nat Rev Cancer. 2014;14:92–107. doi: 10.1038/nrc3655.Paediatric.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73. doi: 10.1016/j.ccr.2006.02.019.PubMedCrossRefGoogle Scholar
  90. 90.
    Tso C-L, Shintaku P, Chen J, et al. Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res. 2006;4:607–19. doi: 10.1158/1541-7786.MCR-06-0005.PubMedCrossRefGoogle Scholar
  91. 91.
    Kahlert UD, Suwala A, Raabe EH, et al. Zeb1 promotes invasion in human fetal neural stem cells and hypoxic glioma neurospheres. Brain Pathol. 2015;25:724–32. doi: 10.1111/bpa.12240.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bhat KPL, Balasubramaniyan V, Vaillant B, et al. Mesenchymal differentiation mediated by NFkB promotes radiation resistance in glioblastoma. Cancer Cell. 2016;24:331–46. doi: 10.1016/j.ccr.2013.08.001.CrossRefGoogle Scholar
  93. 93.
    Goffart N, Lombard A, Lallemand F, et al. CXCL12 mediates Glioblastoma Resistance to Radiotherapy in the Subventricular Zone. Neurol Oncol. 2016;1–11. doi: 10.1093/neuonc/now136.
  94. 94.
    Lombard A, Goffart N, Rogister B. Glioblastoma circulating cells: reality, trap or illusion? Stem Cells Int. 2015;2015:1–11. doi: 10.1155/2015/182985.CrossRefGoogle Scholar
  95. 95.
    Lorenzo C, Liao Q, Hardwicke MA, Ducommun B. Pharmacological inhibition of aurora-A but not aurora-B impairs interphase microtubule dynamics. Cell Cycle. 2009;8:1733–7. doi: 10.4161/cc.8.11.8617.PubMedCrossRefGoogle Scholar
  96. 96.
    Mori D, Yamada M, Mimori-Kiyosue Y, et al. An essential role of the aPKC-Aurora A-NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat Cell Biol. 2009;11:1057–68. doi: 10.1038/ncb1919.PubMedCrossRefGoogle Scholar
  97. 97.
    Vogelmann R, Nelson WJ. Fractionation of the epithelial apical junctional complex: reassessment of protein distributions in different substructures. Mol Biol Cell. 2005;16:701–16. doi: 10.1091/mbc.E04-09-0827.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Royer C, Lu X. Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ. 2011;18:1470–7. doi: 10.1038/cdd.2011.60.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    D’Assoro AB, Liu T, Quatraro C, et al. The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα(+) breast cancer cells. Oncogene. 2014;33:599–610. doi: 10.1038/onc.2012.628.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang L, Xiang J, Yan M, et al. The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Res. 2010;70:9118–28. doi: 10.1158/0008-5472.CAN-10-1246.PubMedCrossRefGoogle Scholar
  101. 101.
    Wan XB, Long ZJ, Yan M, et al. Inhibition of Aurora-A suppresses epithelial-mesenchymal transition and invasion by downregulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis. 2008;29:1930–7. doi: 10.1093/carcin/bgn176.PubMedCrossRefGoogle Scholar
  102. 102.
    Chou CH, Yang NK, Liu TY, et al. Chromosome instability modulated by BMI1-AURKA signaling drives progression in head and neck cancer. Cancer Res. 2013;73:953–66. doi: 10.1158/0008-5472.CAN-12-2397.PubMedCrossRefGoogle Scholar
  103. 103.
    Batlle E, Sancho E, Franci C, et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9. doi: 10.1038/35000034.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang X, Lu N, Niu B, et al. Overexpression of Aurora-A enhances invasion and matrix metalloproteinase-2 expression in esophageal squamous cell carcinoma cells. Mol Cancer Res. 2012;10:588–96. doi: 10.1158/1541-7786.MCR-11-0416.PubMedCrossRefGoogle Scholar
  105. 105.
    Cammareri P, Scopelliti A, Todaro M, et al. Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res. 2010;70:4655–65. doi: 10.1158/0008-5472.CAN-09-3953.PubMedCrossRefGoogle Scholar
  106. 106.
    Mannino M, Gomez-Roman N, Hochegger H, Chalmers AJ. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics. Stem Cell Res. 2014;13:135–43. doi: 10.1016/j.scr.2014.05.001.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Van Brocklyn JR, Wojton J, Meisen WH, et al. Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res. 2014;74:5364–70. doi: 10.1158/0008-5472.CAN-14-0386.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    De Bacco F, D’Ambrosio A, Casanova E, et al. MET inhibition overcomes radiation resistance of glioblastoma stem-like cells. EMBO Mol Med. 2016;8:1–19. doi: 10.15252/emmm.201505890.CrossRefGoogle Scholar
  109. 109.
    Boccaccio C, Comoglio PM. MET, a driver of invasive growth and cancer clonal evolution under therapeutic pressure. Curr Opin Cell Biol. 2014;31:98–105. doi: 10.1016/ Scholar
  110. 110.
    Li Y, Li A, Glas M, et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci U S A. 2011;108:9951–6. doi: 10.1073/pnas.1016912108.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Niu H, Manfredi M, Ecsedy JA. Scientific rationale supporting the clinical development strategy for the investigational Aurora A Kinase inhibitor alisertib in cancer. Front Oncol. 2015;5:189. doi: 10.3389/fonc.2015.00189.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Falchook GS, Bastida CC, Kurzrock R. Aurora kinase inhibitors in oncology clinical trials: current state of the progress. Semin Oncol. 2015;42:832–48. doi: 10.1053/j.seminoncol.2015.09.022.PubMedCrossRefGoogle Scholar
  113. 113.
    Fletcher GC, Brokx RD, Denny TA, et al. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Am Assoc Cancer Res. 2011;10:126–37. doi: 10.1158/1535-7163.MCT-10-0574.Google Scholar
  114. 114.
    Matulonis UA, Lee J, Lasonde B, et al. ENMD-2076, an oral inhibitor of angiogenic and proliferation kinases, has activity in recurrent, platinum resistant ovarian cancer. Eur J Cancer. 2016;49:121–31. doi: 10.1016/j.ejca.2012.07.020.CrossRefGoogle Scholar
  115. 115.
    Manfredi MG, Ecsedy JA, Chakravarty A, et al. Characterization of alisertib (MLN8237), an investigational small-molecule inhibitor of Aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res. 2011;17:7614–24. doi: 10.1158/1078-0432.CCR-11-1536.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Estelle Willems
    • 1
  • Arnaud Lombard
    • 1
    • 2
  • Matthias Dedobbeleer
    • 1
  • Nicolas Goffart
    • 3
    • 4
  • Bernard Rogister
    • 1
    • 5
  1. 1.Laboratory of Nervous System Diseases and Therapy, GIGA-NeurosciencesUniversity of LiègeLiègeBelgium
  2. 2.Department of NeurosurgeryCHU and University of LiègeLiègeBelgium
  3. 3.Department of Human Genetics, GIGA-CancerUniversity of LiègeLiègeBelgium
  4. 4.The T&P Bohnenn Laboratory for Neuro-Oncology, Department of NeurosurgeryUMC UtrechtUtrechtThe Netherlands
  5. 5.Department of NeurologyCHU and University of LiègeLiègeBelgium

Personalised recommendations