Advertisement

Targeted Oncology

, Volume 10, Issue 4, pp 487–499 | Cite as

Renal Toxicities of Targeted Therapies

  • Anum Abbas
  • Mohsin M. Mirza
  • Apar Kishor Ganti
  • Ketki TendulkarEmail author
Review Article

Abstract

With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease.

Keywords

Vascular Endothelial Growth Factor Imatinib Human Epidermal Growth Factor Receptor Cetuximab Everolimus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Dr. Kirk Foster, Department of Pathology/Microbiology, University of Nebraska Medical Center for providing the photomicrographs depicted in Fig. 1.

Conflict of Interest

None of the other authors have any conflicts of interest with any of the subject matter of this work. Dr. Apar Kishor Ganti does, however, report personal fees from Boehringer-Ingelheim, Otsuka Pharmaceuticals, and Biodesix Inc., outside the submitted work.

References

  1. 1.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–6. doi: 10.1056/NEJM197111182852108 CrossRefPubMedGoogle Scholar
  2. 2.
    Gurevich F, Perazella MA (2009) Renal effects of anti-angiogenesis therapy: update for the internist. Am J Med 122(4):322–8. doi: 10.1016/j.amjmed.2008.11.025 CrossRefPubMedGoogle Scholar
  3. 3.
    Rudge JS, Holash J, Hylton D, Russell M, Jiang S, Leidich R et al (2007) VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A 104(47):18363–70. doi: 10.1073/pnas.0708865104 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Usui J, Glezerman IG, Salvatore SP, Chandran CB, Flombaum CD, Seshan SV (2014) Clinicopathological spectrum of kidney diseases in cancer patients treated with vascular endothelial growth factor inhibitors: a report of 5 cases and review of literature. Hum Pathol 45(9):1918–27. doi: 10.1016/j.humpath.2014.05.015 CrossRefPubMedGoogle Scholar
  5. 5.
    Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358(11):1129–36. doi: 10.1056/NEJMoa0707330 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Zhu X, Wu S, Dahut WL, Parikh CR (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis Off J Natl Kidney Found 49(2):186–93. doi: 10.1053/j.ajkd.2006.11.039 CrossRefGoogle Scholar
  7. 7.
    Zhu X, Stergiopoulos K, Wu S (2009) Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol 48(1):9–17. doi: 10.1080/02841860802314720 CrossRefPubMedGoogle Scholar
  8. 8.
    Wu S, Chen JJ, Kudelka A, Lu J, Zhu X (2008) Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol 9(2):117–23. doi: 10.1016/S1470-2045(08)70003-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Li Y, Li S, Zhu Y, Liang X, Meng H, Chen J et al (2014) Incidence and risk of sorafenib-induced hypertension: a systematic review and meta-analysis. J Clin Hypertens 16(3):177–85. doi: 10.1111/jch.12273 CrossRefGoogle Scholar
  10. 10.
    Hurwitz HI, Douglas PS, Middleton JP, Sledge GW, Johnson DH, Reardon DA et al (2013) Analysis of early hypertension and clinical outcome with bevacizumab: results from seven phase III studies. Oncologist 18(3):273–80. doi: 10.1634/theoncologist.2012-0339 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Qi WX, He AN, Shen Z, Yao Y (2013) Incidence and risk of hypertension with a novel multi-targeted kinase inhibitor axitinib in cancer patients: a systematic review and meta-analysis. Br J Clin Pharmacol 76(3):348–57. doi: 10.1111/bcp.12149 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Qi WX, Lin F, Sun YJ, Tang LN, He AN, Yao Y et al (2013) Incidence and risk of hypertension with pazopanib in patients with cancer: a meta-analysis. Cancer Chemother Pharmacol 71(2):431–9. doi: 10.1007/s00280-012-2025-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Hamnvik OP, Choueiri TK, Turchin A, McKay RR, Goyal L, Davis M et al (2015) Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer 121(2):311–9. doi: 10.1002/cncr.28972 CrossRefPubMedGoogle Scholar
  14. 14.
    Hood JD, Meininger CJ, Ziche M, Granger HJ (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274(3 Pt 2):H1054–8PubMedGoogle Scholar
  15. 15.
    Zou AP, Cowley AW Jr (1999) Role of nitric oxide in the control of renal function and salt sensitivity. Curr Hypertens Rep 1(2):178–86CrossRefPubMedGoogle Scholar
  16. 16.
    Feihl F, Liaudet L, Waeber B, Levy BI (2006) Hypertension: a disease of the microcirculation? Hypertension 48(6):1012–7. doi: 10.1161/01.HYP.0000249510.20326.72 CrossRefPubMedGoogle Scholar
  17. 17.
    Harper RN, Moore MA, Marr MC, Watts LE, Hutchins PM (1978) Arteriolar rarefaction in the conjunctiva of human essential hypertensives. Microvasc Res 16(3):369–72CrossRefPubMedGoogle Scholar
  18. 18.
    Gonzalez-Pacheco FR, Deudero JJ, Castellanos MC, Castilla MA, Alvarez-Arroyo MV, Yague S et al (2006) Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol 291(3):H1395–401. doi: 10.1152/ajpheart.01277.2005 CrossRefPubMedGoogle Scholar
  19. 19.
    Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ et al (2010) Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 102(9):596–604. doi: 10.1093/jnci/djq091 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Isobe T, Uchino K, Makiyama C, Ariyama H, Arita S, Tamura S et al (2014) Analysis of adverse events of bevacizumab-containing systemic chemotherapy for metastatic colorectal cancer in Japan. Anticancer Res 34(4):2035–40PubMedGoogle Scholar
  21. 21.
    Izzedine H, Ederhy S, Goldwasser F, Soria JC, Milano G, Cohen A et al (2009) Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol Off J Eur Soc Med Oncol / ESMO 20(5):807–15. doi: 10.1093/annonc/mdn713 CrossRefGoogle Scholar
  22. 22.
    Pande A, Lombardo J, Spangenthal E, Javle M (2007) Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res 27(5B):3465–70PubMedGoogle Scholar
  23. 23.
    Lemmens L, Claes V, Uzzell M (2008) Managing patients with metastatic colorectal cancer on bevacizumab. Br J Nurs 17(15):944–9CrossRefPubMedGoogle Scholar
  24. 24.
    Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC (2010) VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management. Eur J Cancer 46(2):439–48. doi: 10.1016/j.ejca.2009.11.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Izzedine H, Rixe O, Billemont B, Baumelou A, Deray G (2007) Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis Off J Natl Kidney Found 50(2):203–18. doi: 10.1053/j.ajkd.2007.04.025 CrossRefGoogle Scholar
  26. 26.
    Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–34. doi: 10.1056/NEJMoa021491 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N et al (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111(5):707–16. doi: 10.1172/JCI17423 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR et al (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290(2):H560–76. doi: 10.1152/ajpheart.00133.2005 CrossRefPubMedGoogle Scholar
  29. 29.
    Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A et al (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278(15):12605–8. doi: 10.1074/jbc.C300012200 CrossRefPubMedGoogle Scholar
  30. 30.
    Grenon NN (2013) Managing toxicities associated with antiangiogenic biologic agents in combination with chemotherapy for metastatic colorectal cancer. Clin J Oncol Nurs 17(4):425–33. doi: 10.1188/13.CJON.425-433 CrossRefPubMedGoogle Scholar
  31. 31.
    Izzedine H, Soria JC, Escudier B (2013) Proteinuria and VEGF-targeted therapies: an underestimated toxicity? J Nephrol 26(5):807–10. doi: 10.5301/jn.5000307 CrossRefPubMedGoogle Scholar
  32. 32.
    Vigneau C, Lorcy N, Dolley-Hitze T, Jouan F, Arlot-Bonnemains Y, Laguerre B et al (2014) All anti-vascular endothelial growth factor drugs can induce ‘pre-eclampsia-like syndrome’: a RARe study. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 29(2):325–32. doi: 10.1093/ndt/gft465 Google Scholar
  33. 33.
    Hiremath S, Fergusson D, Doucette S, Mulay AV, Knoll GA (2007) Renin angiotensin system blockade in kidney transplantation: a systematic review of the evidence. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 7(10):2350–60. doi: 10.1111/j.1600-6143.2007.01928.x CrossRefGoogle Scholar
  34. 34.
    Blanco S, Bonet J, Lopez D, Casas I, Romero R (2005) ACE inhibitors improve nephrin expression in Zucker rats with glomerulosclerosis. Kidney Int Suppl 93:S10–4. doi: 10.1111/j.1523-1755.2005.09303.x CrossRefPubMedGoogle Scholar
  35. 35.
    Agabiti-Rosei E (2003) Structural and functional changes of the microcirculation in hypertension: influence of pharmacological therapy. Drugs 63(Spec No):19–29CrossRefPubMedGoogle Scholar
  36. 36.
    Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S (2012) Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies. Expert Opin Drug Saf 11(Suppl 1):S9–19. doi: 10.1517/14740338.2011.606213 CrossRefPubMedGoogle Scholar
  37. 37.
    Maliakal P, Ledford A (2010) Electrolyte and protein imbalance following anti-EGFR therapy in cancer patients: a comparative study. Exp Ther Med 1(2):307–11. doi: 10.3892/etm_00000047 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52(5):1180–95CrossRefPubMedGoogle Scholar
  39. 39.
    Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279(1):19–25. doi: 10.1074/jbc.M311201200 CrossRefPubMedGoogle Scholar
  40. 40.
    Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S et al (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117(8):2260–7. doi: 10.1172/JCI31680 PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Tejpar S, Piessevaux H, Claes K, Piront P, Hoenderop JG, Verslype C et al (2007) Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 8(5):387–94. doi: 10.1016/S1470-2045(07)70108-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Fakih M (2008) Management of anti-EGFR-targeting monoclonal antibody-induced hypomagnesemia. Oncology (Williston Park) 22(1):74–6Google Scholar
  43. 43.
    Murdoch DL, Forrest G, Davies DL, McInnes GT (1993) A comparison of the potassium and magnesium-sparing properties of amiloride and spironolactone in diuretic-treated normal subjects. Br J Clin Pharmacol 35(4):373–8PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Blanchard A, Vargas-Poussou R, Vallet M, Caumont-Prim A, Allard J, Desport E et al (2015) Indomethacin, amiloride, or eplerenone for treating hypokalemia in Gitelman syndrome. J Am Soc Nephrol JASN 26(2):468–75. doi: 10.1681/ASN.2014030293 CrossRefPubMedGoogle Scholar
  45. 45.
    Cao Y, Liu L, Liao C, Tan A, Gao F (2010) Meta-analysis of incidence and risk of hypokalemia with cetuximab-based therapy for advanced cancer. Cancer Chemother Pharmacol 66(1):37–42. doi: 10.1007/s00280-009-1131-5 CrossRefPubMedGoogle Scholar
  46. 46.
    Giusti RM, Cohen MH, Keegan P, Pazdur R (2009) FDA review of a panitumumab (Vectibix) clinical trial for first-line treatment of metastatic colorectal cancer. Oncologist 14(3):284–90. doi: 10.1634/theoncologist.2008-0254 CrossRefPubMedGoogle Scholar
  47. 47.
    Whang R, Welt LG (1963) Observations in experimental magnesium depletion. J Clin Invest 42:305–13. doi: 10.1172/JCI104717 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Fakih MG, Wilding G, Lombardo J (2006) Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6(2):152–6. doi: 10.3816/CCC.2006.n.033 CrossRefPubMedGoogle Scholar
  49. 49.
    Marcolino MS, Boersma E, Clementino NC, Macedo AV, Marx-Neto AD, Silva MH et al (2011) Imatinib treatment duration is related to decreased estimated glomerular filtration rate in chronic myeloid leukemia patients. Ann Oncol Off J Eur Soc Med Oncol / ESMO 22(9):2073–9. doi: 10.1093/annonc/mdq715 CrossRefGoogle Scholar
  50. 50.
    Gafter-Gvili A, Ram R, Gafter U, Shpilberg O, Raanani P (2010) Renal failure associated with tyrosine kinase inhibitors—case report and review of the literature. Leuk Res 34(1):123–7. doi: 10.1016/j.leukres.2009.07.009 CrossRefPubMedGoogle Scholar
  51. 51.
    Pou M, Saval N, Vera M, Saurina A, Sole M, Cervantes F et al (2003) Acute renal failure secondary to imatinib mesylate treatment in chronic myeloid leukemia. Leuk Lymphoma 44(7):1239–41. doi: 10.1080/1042819031000079140 CrossRefPubMedGoogle Scholar
  52. 52.
    Foringer JR, Verani RR, Tjia VM, Finkel KW, Samuels JA, Guntupalli JS (2005) Acute renal failure secondary to imatinib mesylate treatment in prostate cancer. Ann Pharmacother 39(12):2136–8. doi: 10.1345/aph.1G131 CrossRefPubMedGoogle Scholar
  53. 53.
    Francois H, Coppo P, Hayman JP, Fouqueray B, Mougenot B, Ronco P (2008) Partial fanconi syndrome induced by imatinib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis Off J Natl Kidney Found 51(2):298–301. doi: 10.1053/j.ajkd.2007.10.039 CrossRefGoogle Scholar
  54. 54.
    Takikita-Suzuki M, Haneda M, Sasahara M, Owada MK, Nakagawa T, Isono M et al (2003) Activation of Src kinase in platelet-derived growth factor-B-dependent tubular regeneration after acute ischemic renal injury. Am J Pathol 163(1):277–86. doi: 10.1016/S0002-9440(10)63651-6 PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Vuky J, Isacson C, Fotoohi M, dela Cruz J, Otero H, Picozzi V et al (2006) Phase II trial of imatinib (Gleevec) in patients with metastatic renal cell carcinoma. Investig New Drugs 24(1):85–8. doi: 10.1007/s10637-005-4543-z CrossRefGoogle Scholar
  56. 56.
    Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K et al (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354(19):2006–13. doi: 10.1056/NEJMoa051140 CrossRefPubMedGoogle Scholar
  57. 57.
    O’Sullivan S, Horne A, Wattie D, Porteous F, Callon K, Gamble G et al (2009) Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. J Clin Endocrinol Metab 94(4):1131–6. doi: 10.1210/jc.2008-2324 CrossRefPubMedGoogle Scholar
  58. 58.
    Aleman JO, Farooki A, Girotra M (2014) Effects of tyrosine kinase inhibition on bone metabolism: untargeted consequences of targeted therapies. Endocr Relat Cancer 21(3):R247–59. doi: 10.1530/ERC-12-0400 CrossRefPubMedGoogle Scholar
  59. 59.
    Steinberg M (2007) Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther 29(11):2289–308. doi: 10.1016/j.clinthera.2007.11.005 CrossRefPubMedGoogle Scholar
  60. 60.
    Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305(5682):399–401. doi: 10.1126/science.1099480 CrossRefPubMedGoogle Scholar
  61. 61.
    Holstein SA, Stokes JB, Hohl RJ (2009) Renal failure and recovery associated with second-generation Bcr-Abl kinase inhibitors in imatinib-resistant chronic myelogenous leukemia. Leuk Res 33(2):344–7. doi: 10.1016/j.leukres.2008.07.029 CrossRefPubMedGoogle Scholar
  62. 62.
    Ozkurt S, Temiz G, Acikalin MF, Soydan M (2010) Acute renal failure under dasatinib therapy. Ren Fail 32(1):147–9. doi: 10.3109/08860220903391226 CrossRefPubMedGoogle Scholar
  63. 63.
    Kaiafa G, Kakaletsis N, Savopoulos C, Perifanis V, Giannouli A, Papadopoulos N et al (2014) Simultaneous manifestation of pleural effusion and acute renal failure associated with dasatinib: a case report. J Clin Pharm Ther 39(1):102–5. doi: 10.1111/jcpt.12107 CrossRefPubMedGoogle Scholar
  64. 64.
    Demetri GD, Lo Russo P, MacPherson IR, Wang D, Morgan JA, Brunton VG et al (2009) Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res 15(19):6232–40. doi: 10.1158/1078-0432.CCR-09-0224 CrossRefGoogle Scholar
  65. 65.
    Wallace E, Lyndon W, Chumley P, Jaimes EA, Fatima H (2013) Dasatinib-induced nephrotic-range proteinuria. Am J Kidney Dis Off J Natl Kidney Found 61(6):1026–31. doi: 10.1053/j.ajkd.2013.01.022 CrossRefGoogle Scholar
  66. 66.
    Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609. doi: 10.1146/annurev.cellbio.13.1.513 CrossRefPubMedGoogle Scholar
  67. 67.
    Liang W, Kujawski M, Wu J, Lu J, Herrmann A, Loera S et al (2010) Antitumor activity of targeting SRC kinases in endothelial and myeloid cell compartments of the tumor microenvironment. Clin Cancer Res Off J Am Assoc Cancer Res 16(3):924–35. doi: 10.1158/1078-0432.CCR-09-1486 CrossRefGoogle Scholar
  68. 68.
    Kaplan B, Qazi Y, Wellen JR (2014) Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev 28(3):126–33. doi: 10.1016/j.trre.2014.03.002 CrossRefGoogle Scholar
  69. 69.
    Letavernier E, Bruneval P, Vandermeersch S, Perez J, Mandet C, Belair MF et al (2009) Sirolimus interacts with pathways essential for podocyte integrity. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 24(2):630–8. doi: 10.1093/ndt/gfn574 Google Scholar
  70. 70.
    Oroszlan M, Bieri M, Ligeti N, Farkas A, Meier B, Marti HP et al (2010) Sirolimus and everolimus reduce albumin endocytosis in proximal tubule cells via an angiotensin II-dependent pathway. Transpl Immunol 23(3):125–32. doi: 10.1016/j.trim.2010.05.003 CrossRefPubMedGoogle Scholar
  71. 71.
    Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012) Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol JASN 23(3):412–20. doi: 10.1681/ASN.2011070690 CrossRefPubMedGoogle Scholar
  72. 72.
    Kirsch AH, Riegelbauer V, Tagwerker A, Rudnicki M, Rosenkranz AR, Eller K (2012) The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am J Physiol Renal Physiol 303(4):F569–75. doi: 10.1152/ajprenal.00180.2012 CrossRefPubMedGoogle Scholar
  73. 73.
    Arnau A, Ruiz JC, Rodrigo E, Quintanar JA, Arias M (2011) Is proteinuria reversible, after withdrawal of mammalian target of rapamycin inhibitors? Transplant Proc 43(6):2194–5. doi: 10.1016/j.transproceed.2011.06.045 CrossRefPubMedGoogle Scholar
  74. 74.
    Kwitkowski VE, Prowell TM, Ibrahim A, Farrell AT, Justice R, Mitchell SS et al (2010) FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma. Oncologist 15(4):428–35. doi: 10.1634/theoncologist.2009-0178 PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Gerullis H, Bergmann L, Maute L, Eimer C, Otto T (2009) Experiences and practical conclusions concerning temsirolimus use and adverse event management in advanced renal cell carcinoma within a compassionate use program in Germany. Cancer Chemother Pharmacol 63(6):1097–102. doi: 10.1007/s00280-008-0835-2 CrossRefPubMedGoogle Scholar
  76. 76.
    Li G, Shan C, Liu L, Zhou T, Zhou J, Hu X et al (2015) Tanshinone IIA inhibits HIF-1alpha and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS One 10(2), e0117440. doi: 10.1371/journal.pone.0117440 PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Weidemann A, Bernhardt WM, Klanke B, Daniel C, Buchholz B, Campean V et al (2008) HIF activation protects from acute kidney injury. J Am Soc Nephrol JASN 19(3):486–94. doi: 10.1681/ASN.2007040419 CrossRefPubMedGoogle Scholar
  78. 78.
    Uthurriague C, Thellier S, Ribes D, Rostaing L, Paul C, Meyer N (2014) Vemurafenib significantly decreases glomerular filtration rate. J Eur Acad Dermatol Venereol JEADV 28(7):978–9. doi: 10.1111/jdv.12322 CrossRefPubMedGoogle Scholar
  79. 79.
    Launay-Vacher V, Zimner-Rapuch S, Poulalhon N, Fraisse T, Garrigue V, Gosselin M et al (2014) Acute renal failure associated with the new BRAF inhibitor vemurafenib: a case series of 8 patients. Cancer 120(14):2158–63. doi: 10.1002/cncr.28709 CrossRefPubMedGoogle Scholar
  80. 80.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–703. doi: 10.1056/NEJMoa1006448 PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(13):1189–97. doi: 10.1056/NEJMoa1311107 PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–70. doi: 10.1200/JCO.2011.35.6345 PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Lin YT, Wang YF, Yang JC, Yu CJ, Wu SG, Shih JY et al (2014) Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol 9(11):1720–5. doi: 10.1097/JTO.0000000000000326 CrossRefPubMedGoogle Scholar
  84. 84.
    Schnell P, Bartlett CH, Solomon BJ, Tassell V, Shaw AT, de Pas T et al (2015) Complex renal cysts associated with crizotinib treatment. Cancer Med. doi: 10.1002/cam4.437 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Horie S, Higashihara E, Nutahara K, Mikami Y, Okubo A, Kano M et al (1994) Mediation of renal cyst formation by hepatocyte growth factor. Lancet 344(8925):789–91CrossRefPubMedGoogle Scholar
  86. 86.
    Klempner SJ, Aubin G, Dash A, Ou SH (2014) Spontaneous regression of crizotinib-associated complex renal cysts during continuous crizotinib treatment. Oncologist 19(9):1008–10. doi: 10.1634/theoncologist.2014-0216 PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Shaw AT, Engelman JA (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(26):2537–9. doi: 10.1056/NEJMc1404894 CrossRefPubMedGoogle Scholar
  88. 88.
    Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369(6):507–16. doi: 10.1056/NEJMoa1306220 PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–23. doi: 10.1056/NEJMoa1003466 PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Izzedine H, Gueutin V, Gharbi C, Mateus C, Robert C, Routier E et al (2014) Kidney injuries related to ipilimumab. Investig New Drugs 32(4):769–73. doi: 10.1007/s10637-014-0092-7 CrossRefGoogle Scholar
  91. 91.
    Fadel F, El Karoui K, Knebelmann B (2009) Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 361(2):211–2. doi: 10.1056/NEJMc0904283 CrossRefPubMedGoogle Scholar
  92. 92.
    Lute KD, May KF Jr, Lu P, Zhang H, Kocak E, Mosinger B et al (2005) Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood 106(9):3127–33. doi: 10.1182/blood-2005-06-2298 PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Bhaumik SK, Kher V, Arora P, Rai PK, Singhal M, Gupta A et al (1996) Evaluation of clinical and histological prognostic markers in drug-induced acute interstitial nephritis. Ren Fail 18(1):97–104CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anum Abbas
    • 1
  • Mohsin M. Mirza
    • 1
  • Apar Kishor Ganti
    • 2
  • Ketki Tendulkar
    • 3
    Email author
  1. 1.Department of Internal Medicine, School of MedicineCreighton UniversityOmahaUSA
  2. 2.Division of Oncology and Hematology, Department of Internal MedicineVA-Nebraska Western Iowa Health Care System and University of Nebraska Medical CenterOmahaUSA
  3. 3.Division of Nephrology, Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations