Advertisement

Targeted Oncology

, Volume 10, Issue 4, pp 565–573 | Cite as

A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines

  • Yi Shi
  • Lin Sun
  • Ge Chen
  • Dongyan Zheng
  • Li LiEmail author
  • Wanguo WeiEmail author
Original Research

Abstract

Breast cancer is one of the most significant causes of female cancer death worldwide. Paclitaxel, an extensively used breast cancer chemotherapeutic has limited success due to drug resistance. 2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532), a small molecule pharmacological inhibitor of telomerase activity, can inhibit human cancer cell proliferation as well. Thus, to enhance breast cancer treatment efficacy, we studied the combination of BIBR1532 and paclitaxel in breast cancer cell lines. Cell viability assays revealed that BIBR1532 or paclitaxel alone inhibited proliferation in a dose-dependent manner, and combining the drugs synergistically induced growth inhibition in all breast cell lines tested independent of their p53, ER, and HER2 status. The drug combination also synergistically inhibited colony formation of MCF-7 cells in a dose-dependent manner. Annexin V-PI staining and Western blot assays on PARP cleavage and caspase-8 and caspase-3 revealed that BIBR1532 in combination with paclitaxel was more potent than either agent alone in promoting MCF-7 cell apoptosis. Cell cycle analysis indicated that BIBR1532 induced a G1 phase arrest and paclitaxel arrested cells at the G2/M phase. The drug combination dramatically blocked S cells from entering the G2/M phase. Our results suggest the potential of telomerase inhibition as an effective breast cancer treatment and that used in conjunction with paclitaxel; it may potentiate tumor cytotoxicity.

Keywords

Telomerase inhibitor BIBR1532 Paclitaxel Breast cancer Apoptosis 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21202100) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA01040302).

Conflict of interest

Y Shi, L Sun, G Chen, D Zheng, L Li, and W Wei have no conflicts of interest to declare.

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefPubMedGoogle Scholar
  2. 2.
    Yang L, Parkin DM, Whelan S et al (2005) Statistics on cancer in China: cancer registration in 2002. Eur J Cancer Prev 14:329–335CrossRefPubMedGoogle Scholar
  3. 3.
    Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology Basel 77:400–410CrossRefGoogle Scholar
  4. 4.
    Ciardiello F, Troiani T, Caputo F et al (2006) Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br J Cancer 94:1604–1609PubMedPubMedCentralGoogle Scholar
  5. 5.
    Dapic V, Carvalho MA, Monteiro AN (2005) Breast cancer susceptibility and the DNA damage response. Cancer Control 12:127–136PubMedGoogle Scholar
  6. 6.
    Berry J (2005) Are all aromatase inhibitors the same? A review of controlled clinical trials in breast cancer. Clin Ther 27:1671–1684CrossRefPubMedGoogle Scholar
  7. 7.
    Nicholson BP, Paul DM, Hande KR et al (2000) Paclitaxel, 5-fluorouracil, and leucovorin (TFL) in the treatment of metastatic breast cancer. Clin Breast Cancer 1(136–143):144Google Scholar
  8. 8.
    Androic I, Kramer A, Yan R et al (2008) Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol. BMC Cancer 8:391CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204CrossRefPubMedGoogle Scholar
  10. 10.
    Gomez DE, Armando RG, Farina HG et al (2012) Telomere structure and telomerase in health and disease (review). Int J Oncol 41:1561–1569PubMedPubMedCentralGoogle Scholar
  11. 11.
    de Jesus BB, Blasco MA (2012) Potential of telomerase activation in extending health span and longevity. Curr Opin Cell Biol 24:739–743CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–637CrossRefPubMedGoogle Scholar
  13. 13.
    Skordalakes E (2009) Telomerase structure paves the way for new cancer therapies. Future Oncol 5:163–167CrossRefPubMedGoogle Scholar
  14. 14.
    Zvereva MI, Shcherbakova DM, Dontsova OA (2010) Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc) 75:1563–1583CrossRefGoogle Scholar
  15. 15.
    Mason M, Schuller A, Skordalakes E (2011) Telomerase structure function. Curr Opin Struct Biol 21:92–100CrossRefPubMedGoogle Scholar
  16. 16.
    Podlevsky JD, Chen JJ (2012) It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 730:3–11CrossRefPubMedGoogle Scholar
  17. 17.
    Hukezalie KR, Wong JM (2013) Structure-function relationship and biogenesis regulation of the human telomerase holoenzyme. FEBS J 280:3194–3204CrossRefPubMedGoogle Scholar
  18. 18.
    Sauerwald A, Sandin S, Cristofari G, Scheres SH, Lingner J, Rhodes D (2013) Structure of active dimeric human telomerase. Nat Struct Mol Biol 20:454–460CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8:167–179CrossRefPubMedGoogle Scholar
  20. 20.
    Shay JW, Keith WN (2008) Targeting telomerase for cancer therapeutics. Br J Cancer 98:677–683CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Agrawal A, Dang S, Gabrani R (2012) Recent patents on anti-telomerase cancer therapy. Recent Pat Anticancer Drug Discov 7:102–117CrossRefPubMedGoogle Scholar
  22. 22.
    Buseman CM, Wright WE, Shay JW (2012) Is telomerase a viable target in cancer? Mutat Res 730:90–97CrossRefPubMedGoogle Scholar
  23. 23.
    Ding Z, Wu CJ, Jaskelioff M et al (2012) Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148:896–907CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dosset M, Godet Y, Vauchy C et al (2012) Universal cancer peptide-based therapeutic vaccine breaks tolerance against telomerase and eradicates established tumor. Clin Cancer Res 18:6284–6295CrossRefPubMedGoogle Scholar
  25. 25.
    Chen G, Da L, Wang H et al (2011) HIV-Tat-mediated delivery of an LPTS functional fragment inhibits telomerase activity and tumorigenicity of hepatoma cells. Gastroenterology 140:332–343CrossRefPubMedGoogle Scholar
  26. 26.
    Dikmen ZG, Gellert GC, Jackson S et al (2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 65:7866–7873PubMedGoogle Scholar
  27. 27.
    Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW (2006) Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat 96:73–81CrossRefPubMedGoogle Scholar
  28. 28.
    Hochreiter AE, Xiao H, Goldblatt EM et al (2006) Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 12:3184–3192CrossRefPubMedGoogle Scholar
  29. 29.
    Gryaznov SM, Jackson S, Dikmen G et al (2007) Oligonucleotide conjugate GRN163L targeting human telomerase as potential anticancer and antimetastatic agent. Nucleosides Nucleotides Nucleic Acids 26:1577–1579CrossRefPubMedGoogle Scholar
  30. 30.
    Gomez-Millan J, Goldblatt EM, Gryaznov SM, Mendonca MS, Herbert BS (2007) Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 67:897–905CrossRefPubMedGoogle Scholar
  31. 31.
    Shammas MA, Koley H, Bertheau RC et al (2008) Telomerase inhibitor GRN163L inhibits myeloma cell growth in vitro and in vivo. Leukemia 22:1410–1418CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Goldblatt EM, Gentry ER, Fox MJ, Gryaznov SM, Shen C, Herbert BS (2009) The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel. Mol Cancer Ther 8:2027–2035CrossRefPubMedGoogle Scholar
  33. 33.
    Roth A, Harley CB, Baerlocher GM (2010) Imetelstat (GRN163L)—telomerase-based cancer therapy. Recent Results Cancer Res 184:221–234CrossRefPubMedGoogle Scholar
  34. 34.
    Cerone MA, Londono-Vallejo JA, Autexier C (2006) Telomerase inhibition enhances the response to anticancer drug treatment in human breast cancer cells. Mol Cancer Ther 5:1669–1675CrossRefPubMedGoogle Scholar
  35. 35.
    Tamakawa RA, Fleisig HB, Wong JM (2010) Telomerase inhibition potentiates the effects of genotoxic agents in breast and colorectal cancer cells in a cell cycle-specific manner. Cancer Res 70:8684–8694CrossRefPubMedGoogle Scholar
  36. 36.
    Ward RJ, Autexier C (2005) Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 68:779–786PubMedGoogle Scholar
  37. 37.
    Dong X, Liu A, Zer C et al (2009) siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells. BMC Cancer 9:133CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bashash D, Ghaffari SH, Zaker F et al (2013) BIBR 1532 increases arsenic trioxide-mediated apoptosis in acute promyelocytic leukemia cells: therapeutic potential for APL. Anticancer Agents Med Chem 13:1115–1125CrossRefPubMedGoogle Scholar
  39. 39.
    Damm K, Hemmann U, Garin-Chesa P et al (2001) A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 20:6958–6968CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bashash D, Ghaffari SH, Mirzaee R, Alimoghaddam K, Ghavamzadeh A (2013) Telomerase inhibition by non-nucleosidic compound BIBR1532 causes rapid cell death in pre-B acute lymphoblastic leukemia cells. Leuk Lymphoma 54:561–568CrossRefPubMedGoogle Scholar
  41. 41.
    El-Daly H, Kull M, Zimmermann S, Pantic M, Waller CF, Martens UM (2005) Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 105:1742–1749CrossRefPubMedGoogle Scholar
  42. 42.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRefGoogle Scholar
  43. 43.
    Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681CrossRefPubMedGoogle Scholar
  44. 44.
    Tabori U, Wong V, Ma J et al (2008) Telomere maintenance and dysfunction predict recurrence in paediatricependymoma. Br J Cancer 99:1129–1135CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shi YK, Li ZH, Han XQ et al (2010) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances taxol-induced cell death in breast cancer. Cancer Chemother Pharmacol 66:1131–1140CrossRefPubMedGoogle Scholar
  46. 46.
    Deng Y, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450–458CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Niculescu AR, Chen X, Smeets M, Hengst L, Prives C, Reed SI (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629–643CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zasadil LM, Andersen KA, Yeum D et al (2014) Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 6:229r–243rCrossRefGoogle Scholar
  49. 49.
    Dikmen ZG, Wright WE, Shay JW, Gryaznov SM (2008) Telomerase targeted oligonucleotidethio-phosphoramidates in T24-luc bladder cancer cells. J Cell Biochem 104:444–452CrossRefPubMedGoogle Scholar
  50. 50.
    Das GC, Holiday D, Gallardo R, Haas C (2001) Taxol-induced cell cycle arrest and apoptosis: dose-response relationship in lung cancer cells of different wild-type p53 status and under isogenic condition. Cancer Lett 165:147–153CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  2. 2.School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations