Advertisement

Targeted Oncology

, Volume 9, Issue 4, pp 349–357 | Cite as

Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients

  • Minghui Zhang
  • Xiaosan Zhang
  • Shu Zhao
  • Yan Wang
  • Wenyu Di
  • Gangling Zhao
  • Maopeng Yang
  • Qingyuan Zhang
Original Research

Abstract

Triple-negative breast cancer (TNBC) is a particular type of breast cancer which is characterized by its biological aggressiveness, worse prognosis, and lack of prognostic markers or therapeutic targets in contrast with hormonal receptor-positive and human epidermal growth factor receptor 2-positive (HER2+) breast cancers. We aimed to evaluate survivin and epidermal growth factor receptor (EGFR) expression and their prognostic value and determine their relationships with the clinicopathological parameters of TNBC. A total of 136 patients who had undergone a resection of primary TNBC were enrolled at the Third Affiliated Hospital of Harbin Medical University from March 2003 to September 2005. Expression of ER, PR, HER2, EGFR, and survivin was assessed by immunohistochemistry. The association of TNBC and other clinicopathological variables and the prognostic value of survivin and EGFR expression were evaluated. Survivin was expressed in 62 (45.6 %) cases and EGFR was expressed in 82 (60.3 %) cases. Survivin expression was associated with menopausal status (P = 0.011), tumor size (P = 0.037), and lymph node status (P = 0.001). EGFR expression was associated with menopausal status (P = 0.029), lymph node status (P = 0.004), P53 expression (P = 0.001), Ki-67 expression (P = 0.028), and lymphatic vascular invasion (P = 0.037). A multivariate analysis demonstrated that tumor size (hazard ratio (HR) 1.587, 95 % confidence interval (CI) 1.081–2.330, P = 0.018 for disease-free survival (DFS); HR 1.606, 95%CI 1.096–2.354, P = 0.015 for overall survival (OS)), lymph node status (HR 2.873, 95%CI 1.544–5.344, P = 0.001 for DFS; HR 2.915, 95%CI 1.553–5.471, P = 0.001 for OS), tumor grade (HR 1.914, 95%CI 1.218–3.007, P = 0.005 for DFS; HR 1.983, 95%CI 1.228–3.203, P = 0.005 for OS), EGFR (HR 3.008, 95%CI 1.331–6.792, P = 0.008 for DFS; HR 3.151, 95%CI 1.374–7.226, P = 0.007 for OS), and survivin (HR 1.573, 95%CI 1.087–2.277, P = 0.016 for DFS; HR 1.607, 95%CI 1.088–2.374, P = 0.017 for OS) were of prognostic significance for disease-free and overall survival. We draw a conclusion from the present study that survivin and EGFR expression are useful prognostic markers of TNBC and might be useful for molecular targeting therapy of TNBC treatment.

Keywords

Triple-negative breast cancer EGFR Survivin Prognosis 

Notes

Acknowledgments

This experiment was finished in the Oncobiology Key Lab of Heilongjiang Common Institution of Higher Learning.

Conflict of interest

The authors have stated that they have no conflict of interest.

References

  1. 1.
    Bauer KR, Brown M, Cress RD et al (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and Her2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109(9):1721–1728PubMedCrossRefGoogle Scholar
  2. 2.
    Kilburn LS, On Behalf of the TNT Trial Management Group (2008) Triple-negative breast cancer: a new area for phase III breast cancer clinical trials. Clin Oncol (R Coll Radiol) 20(1):35–39CrossRefGoogle Scholar
  3. 3.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumors. Nature 406:747–752PubMedCrossRefGoogle Scholar
  4. 4.
    Kreike B, van Kouwenhove M, Horlings H et al (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9:R65PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Buchholz TA, Tu X, Ang KK (2005) Epidermal growth factor receptor expression correlates with poor survival in patients who have breast carcinoma treated with doxorubicin-based neoadjuvant chemotherapy. Cancer 104:676–681PubMedCrossRefGoogle Scholar
  6. 6.
    Tsutsui S, Ohno S, Murakami S (2002) Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat 71:67–75PubMedCrossRefGoogle Scholar
  7. 7.
    O'Driscoll L, Linehan R, Kennedy SM et al (2003) Lack of prognostic significance of survivin, survivin-Delta Ex3, survivin-2B, galectin-3, bag-1, bax-alpha, and MRP-1 mRNAs in breast cancer. Cancer Lett 201:225–236PubMedCrossRefGoogle Scholar
  8. 8.
    Tanaka K, Iwamoto S, Gon G et al (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Cancer Res 6:127–134PubMedGoogle Scholar
  9. 9.
    Guillamo JS, Bouard S, Valable S et al (2009) Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition on invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res 15:3697–3704PubMedCrossRefGoogle Scholar
  10. 10.
    Ryan BM, Konecny GE, Kahlert S et al (2006) Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol 17:597–604PubMedCrossRefGoogle Scholar
  11. 11.
    Duckett CS, Nava VE, Gedrich RW et al (1996) A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 14:2685–2694Google Scholar
  12. 12.
    Li F, Ling X (2006) Survivin study: an update of “what is the next wave”? J Cell Physiol 208:476–486PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kajiwara Y, Yamasaki F, Hama S et al (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97:1077–1083PubMedCrossRefGoogle Scholar
  14. 14.
    Andersen MH, Thor SP (2002) Survivin: a universal tumor antigen. Histol Histopathol 17:669–675PubMedGoogle Scholar
  15. 15.
    Korkola JE, Devries S, Fridlyand J et al (2003) Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 63:7167–7175PubMedGoogle Scholar
  16. 16.
    Fields AC, Cotsonis G, Sexton D et al (2004) Survivin expression in hepatocellualr carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol 17:1378–1385PubMedCrossRefGoogle Scholar
  17. 17.
    Ferrandina G, Legge F, Martinelli E et al (2005) Survivin expression in ovarian cancer and its correlation with clinico-pathological, surgical and apoptosis-related parameters. Br J Cancer 92:271–277PubMedCentralPubMedGoogle Scholar
  18. 18.
    Preuss SF, Weinell A, Molitor M et al (2008) Survivin and epidermal growth factor receptor expression in surgically treated oropharyngeal squamous cell carcinoma. Head Neck 30:1318–1324PubMedCrossRefGoogle Scholar
  19. 19.
    Span PN, Sweep FC, Wiegerinck ET et al (2004) Survivin is an independent prognostic marker for risk stratification of breast cancer patients. Clin Chem 50:1986–1993PubMedCrossRefGoogle Scholar
  20. 20.
    Kennedy SM, O'Driscoll L, Purcell R et al (2003) Prognostic importance of survivin in breast cancer. Br J Cancer 88:1077–1083PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Altman DG, McShane LM, Sauerbrei W et al (2012) Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med 10:51PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Guler G, Huebner K, Himmetoglu C et al (2009) Fragile histidine triad protein, WW domain-containing oxidoreductase protein Wwox, and activator protein 2gamma expression levels correlate with basal phenotype in breast cancer. Cancer 115:899–908PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lo muzio L, Pannone G, Staibano S et al (2003) Survivin expression in oral squamous cell. Br J Cancer 89:2244–2248PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Riva C, Dainese E, Caprara G et al (2005) Immunohistochemical study of androgen receptors in breast carcinoma. Evidence of their frequent expression in lobular carcinoma. Virchows Arch 447:695–700PubMedCrossRefGoogle Scholar
  25. 25.
    Agoff SN, Swanson PE, Linden H et al (2003) Androgen receptor expression in estrogen receptor-negative breast cancer. Immunohistochemical, clinical, and prognostic associations. Am J Clin Pathol 120:725–731PubMedCrossRefGoogle Scholar
  26. 26.
    Hitt R, Echarri MJ (2006) Molecular biology in head and neck cancer. Clin Transl Oncol 8:776–779PubMedCrossRefGoogle Scholar
  27. 27.
    Kogiku M, Ohsawa I, Matsumoto K et al (2008) Prognosis of glioma patients by combined immunostaining for survivin, Ki-67 and epidermal growth factor receptor. J Clin Neurosci 15:1198–1203PubMedCrossRefGoogle Scholar
  28. 28.
    Zimmermann M, Zouhair A, Azria D et al (2006) The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol 1:11PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Knauf JA (2011) Does the epidermal growth factor receptor play a role in the progression of thyroid cancer? Thyroid 21(11):1171–1174PubMedCrossRefGoogle Scholar
  30. 30.
    Schiff BA, McMurphy AB, Jasser SA et al (2004) Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin Cancer Res 10:8594–8602PubMedCrossRefGoogle Scholar
  31. 31.
    Ludovini V, Bellezza G, Pistola L et al (2009) High coexpression of both insulin-like growth factor receptor-1 (IGFR-1) and epidermal growth factor receptor (EGFR) is associated with shorter disease-free survival in resected non-small-cell lung cancer patients. Ann Oncol 20:842–849PubMedCrossRefGoogle Scholar
  32. 32.
    Spano JP, Lagorce C, Atlan D et al (2005) Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 16:102–108PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Zhang S, MacLennan GT et al (2007) Epidermal growth factor receptor protein expression and gene amplification in small cell carcinoma of the urinary bladder. Clin Cancer Res 13:953–957PubMedCrossRefGoogle Scholar
  34. 34.
    Leibl S, Zigeuner R, Hutterer G et al (2008) EGFR expression in urothelial carcinoma of the upper urinary tract is associated with disease progression and metaplastic morphology. APMIS 116:27–32PubMedCrossRefGoogle Scholar
  35. 35.
    Chow NH, Chan SH, Tzai TS et al (2001) Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clin Cancer Res 7:1957–1962PubMedGoogle Scholar
  36. 36.
    Stadlmann S, Gueth U, Reiser U et al (2006) Epithelial growth factor receptor status in primary and recurrent ovarian cancer. Mod Pathol 19:607–610PubMedCrossRefGoogle Scholar
  37. 37.
    Rimawi MF, Shetty PB, Weiss HL et al (2010) Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer 116:1234–1242PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Dua R, Zhang J, Nhonthachit P et al (2010) EGFR over-expression and activation in high HER2, ER negative breast cancer cell line induces trastuzumab resistance. Breast Cancer Res Treat 122:685–697PubMedCrossRefGoogle Scholar
  39. 39.
    Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578PubMedCrossRefGoogle Scholar
  40. 40.
    Kosaka T, Yamaki E, Mogi A et al (2011) Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol 2011:165214. doi: 10.1155/2011/165214 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Zhang X, Chang A (2008) Molecular predictors of EGFR-TKI sensitivity in advanced non–small cell lung cancer. Int J Med Sci 5:209–217PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Altieri DC (2001) The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 7:542–547PubMedCrossRefGoogle Scholar
  43. 43.
    Span PN, Tjan-Heijnen VC, Manders P et al (2006) High survivin predicts a poor response to endocrine therapy, but a good response to chemotherapy in advanced breast cancer. Breast Cancer Res Treat 98:223–230PubMedCrossRefGoogle Scholar
  44. 44.
    Wang Q, Greene MI (2005) EGFR enhances survivin expression through the phosphoinositide 3 (PI-3) kinase signaling pathway. Exp Mol Pathol 79:100–107PubMedCrossRefGoogle Scholar
  45. 45.
    Xie D, Zeng YX, Wang HJ et al (2006) Expression of cytoplasmic and nuclear survivin in primary and secondary human glioblastoma. Br J Cancer 94:108–114PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • Minghui Zhang
    • 1
  • Xiaosan Zhang
    • 1
  • Shu Zhao
    • 1
  • Yan Wang
    • 1
  • Wenyu Di
    • 2
  • Gangling Zhao
    • 3
  • Maopeng Yang
    • 1
  • Qingyuan Zhang
    • 1
  1. 1.Department of Medical OncologyThe Third Affiliated Hospital of Harbin Medical UniversityHarbinChina
  2. 2.Department of PathologyThe First Affiliated Hospital of XinXiang Medical CollegeWeiHuiChina
  3. 3.Department of OsteologyThe 371 Hospital of the Chinese People’s Liberation ArmyXinXiangChina

Personalised recommendations